Scattering theory for the shape resonance model. I. Non-resonant energies

Shu Nakamura

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 50, Issue: 2, page 115-131
  • ISSN: 0246-0211

How to cite

top

Nakamura, Shu. "Scattering theory for the shape resonance model. I. Non-resonant energies." Annales de l'I.H.P. Physique théorique 50.2 (1989): 115-131. <http://eudml.org/doc/76439>.

@article{Nakamura1989,
author = {Nakamura, Shu},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {shape resonance; semiclassical limit; S-matrix; nonresonant energies},
language = {eng},
number = {2},
pages = {115-131},
publisher = {Gauthier-Villars},
title = {Scattering theory for the shape resonance model. I. Non-resonant energies},
url = {http://eudml.org/doc/76439},
volume = {50},
year = {1989},
}

TY - JOUR
AU - Nakamura, Shu
TI - Scattering theory for the shape resonance model. I. Non-resonant energies
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 115
EP - 131
LA - eng
KW - shape resonance; semiclassical limit; S-matrix; nonresonant energies
UR - http://eudml.org/doc/76439
ER -

References

top
  1. [1] S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations. Bounds on eigenfunctions of N-Body Schrödinger operators. Mathematical Notes.Princeton, N. J., Princeton Univ. Press, 1982. Zbl0503.35001MR745286
  2. [2] M. Ashbaugh, E. Harrell, Perturbation theory for shape resonances and large barrior potentials. Commun. Math. Phys., t. 83, 1982, p. 151-170. Zbl0494.34044MR649157
  3. [3] J.M. Combes, P. Duclos, M. Klein, R. Seiler, The shape resonance. Commun. Math. Phys., t. 110, 1987, p. 215-236. Zbl0629.47044MR887996
  4. [4] J.M. Combes, P. Duclos, R. Seiler, Convergent expansions for tunneling. Commun. Math. Phys., t. 92, 1983, p. 229-245. Zbl0579.47050MR728868
  5. [5] J.M. Combes, P. Duclos, R. Seiler, On the shape resonance. Springer lecture notes in physics, 1984, t. 211, p. 64-77. MR777332
  6. [6] G. Hagedorn, Semiclassical quantum mechanics. I: the h → 0 limit for coherent states. Commun. Math. Phys., t. 71, 1980, p. 77-93. MR556903
  7. [7] E. Harrell, On the rate of eigenvalue degeneracy. Commun. Math. Phys., t. 60, 1978, p. 73-95. Zbl0395.34023MR486764
  8. [8] E. Harrell, Double wells. Commun. Math. Phys., t. 75, 1980, p. 239-261. Zbl0445.35036MR581948
  9. [9] B. Helffer, J. Sjöstrand, Multiple wells in the semi-classical limit. I. Commun. in PDE, t. 9, 1985, p. 337-369. Zbl0546.35053
  10. [10] B. Helffer, J. Sjöstrand, Resonances en limite semi-classique. Preprint. Zbl0631.35075
  11. [11] T. Kato, Scattering theory with two Hilbert spaces. J. Funct. Anal., t. 1, 1967, p. 342- 369. Zbl0171.12303MR220097
  12. [12] T. Kato, S.T. Kuroda, The abstract theory of scattering. Rocky Mountain J. Math., t. 1, 1971, p. 127-171. Zbl0241.47005MR385604
  13. [13] M. Klein, On the absence of resonances for Schrödinger operators with non-trapping potentials in the classical limit. Commun. Math. Phys., 1986, t. 106, p. 485-494. Zbl0651.47007MR859823
  14. [14] S.T. Kuroda, Scattering theory for differential operators. I.-II. J. Math. Soc. Japan, t. 25, 1973, p. 75-104 ; 222-234. Zbl0245.47006
  15. [15] R. Lavine, Absolute continuity of positive spectrum for Schrödinger operators with long-range potentials. J. Funct. Anal., t. 12, 1973, p. 30-54. Zbl0246.47017MR342880
  16. [16] M. Reed, B. Simon, Methods of modern mathematical physics. I-IV. New York, New York, San Francisco, London, Academic Press, 1972-1979. Zbl0825.76397MR751959
  17. [17] D. Robert, H. Tamura, Semi-classical bounds for resolvents of Schrödinger operators and asymptotics for scattering phase. Commun. in PDE, t. 9, 1984, p. 1017- 1058. Zbl0561.35021MR755930
  18. [18] D. Robert, H. Tamura, Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections. Preprint. Zbl0648.35066
  19. [19] S.L. Robinson, The semiclassical limit of quantum dynamics. I: Time evolution; II: Scattering theory. Preprints. Zbl0666.35071MR927028
  20. [20] B. Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math., t. 120, 1984, p. 89-118. Zbl0626.35070MR750717
  21. [21] B. Simon, Semiclassical analysis of low lying eigenvalues. IV. Flea of elephants. J. Funct. Anal., t. 63, 1985, p. 123-136. Zbl0652.35090MR795520
  22. [22] B.R. Vainverg, Quasi-classical approximation in stationary scattering problems, Funct. Anal. Appl., t. 11, 1977, p. 6-18. 
  23. [23] D.R. Yafaev, The eikonal approximation and the asymptotics of the total cross–section for the Schrödinger equation. Ann. Inst. Henri Poincaré, t. 44, 1986, p. 397- 425. Zbl0608.35054MR850898
  24. [24] K. Yajima, The quasi-classical limit of scattering amplitude, Finite range potentials. Springer lecture notes in math., t. 1159, 1985, p. 242-263. Zbl0591.35079MR824991
  25. [25] K. Yajima, The quasi-classical limit of scattering amplitude, L2-approach for short range potentials. Japan. J. Math., t. 13, 1987, p. 77-126. Zbl0648.35067MR914315
  26. [26] K. Yajima, Private communication. 
  27. [27] P. Briet, J.M. Combes, P. Duclos, On the location of resonances for Schrodinger operators in the semiclassical limit : Resonance free domains. To appear in J. Math. Anal. Appl. Zbl0629.47043
  28. [28] P. Briet, J.M. Combes, P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit: II. Barrier top resonances. Commun. in PDE, t. 12, 1987, p. 201-222. Zbl0622.47047MR876987

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.