Scattering theory for the shape resonance model. I. Non-resonant energies
Annales de l'I.H.P. Physique théorique (1989)
- Volume: 50, Issue: 2, page 115-131
- ISSN: 0246-0211
Access Full Article
topHow to cite
topNakamura, Shu. "Scattering theory for the shape resonance model. I. Non-resonant energies." Annales de l'I.H.P. Physique théorique 50.2 (1989): 115-131. <http://eudml.org/doc/76439>.
@article{Nakamura1989,
author = {Nakamura, Shu},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {shape resonance; semiclassical limit; S-matrix; nonresonant energies},
language = {eng},
number = {2},
pages = {115-131},
publisher = {Gauthier-Villars},
title = {Scattering theory for the shape resonance model. I. Non-resonant energies},
url = {http://eudml.org/doc/76439},
volume = {50},
year = {1989},
}
TY - JOUR
AU - Nakamura, Shu
TI - Scattering theory for the shape resonance model. I. Non-resonant energies
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 115
EP - 131
LA - eng
KW - shape resonance; semiclassical limit; S-matrix; nonresonant energies
UR - http://eudml.org/doc/76439
ER -
References
top- [1] S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations. Bounds on eigenfunctions of N-Body Schrödinger operators. Mathematical Notes.Princeton, N. J., Princeton Univ. Press, 1982. Zbl0503.35001MR745286
- [2] M. Ashbaugh, E. Harrell, Perturbation theory for shape resonances and large barrior potentials. Commun. Math. Phys., t. 83, 1982, p. 151-170. Zbl0494.34044MR649157
- [3] J.M. Combes, P. Duclos, M. Klein, R. Seiler, The shape resonance. Commun. Math. Phys., t. 110, 1987, p. 215-236. Zbl0629.47044MR887996
- [4] J.M. Combes, P. Duclos, R. Seiler, Convergent expansions for tunneling. Commun. Math. Phys., t. 92, 1983, p. 229-245. Zbl0579.47050MR728868
- [5] J.M. Combes, P. Duclos, R. Seiler, On the shape resonance. Springer lecture notes in physics, 1984, t. 211, p. 64-77. MR777332
- [6] G. Hagedorn, Semiclassical quantum mechanics. I: the h → 0 limit for coherent states. Commun. Math. Phys., t. 71, 1980, p. 77-93. MR556903
- [7] E. Harrell, On the rate of eigenvalue degeneracy. Commun. Math. Phys., t. 60, 1978, p. 73-95. Zbl0395.34023MR486764
- [8] E. Harrell, Double wells. Commun. Math. Phys., t. 75, 1980, p. 239-261. Zbl0445.35036MR581948
- [9] B. Helffer, J. Sjöstrand, Multiple wells in the semi-classical limit. I. Commun. in PDE, t. 9, 1985, p. 337-369. Zbl0546.35053
- [10] B. Helffer, J. Sjöstrand, Resonances en limite semi-classique. Preprint. Zbl0631.35075
- [11] T. Kato, Scattering theory with two Hilbert spaces. J. Funct. Anal., t. 1, 1967, p. 342- 369. Zbl0171.12303MR220097
- [12] T. Kato, S.T. Kuroda, The abstract theory of scattering. Rocky Mountain J. Math., t. 1, 1971, p. 127-171. Zbl0241.47005MR385604
- [13] M. Klein, On the absence of resonances for Schrödinger operators with non-trapping potentials in the classical limit. Commun. Math. Phys., 1986, t. 106, p. 485-494. Zbl0651.47007MR859823
- [14] S.T. Kuroda, Scattering theory for differential operators. I.-II. J. Math. Soc. Japan, t. 25, 1973, p. 75-104 ; 222-234. Zbl0245.47006
- [15] R. Lavine, Absolute continuity of positive spectrum for Schrödinger operators with long-range potentials. J. Funct. Anal., t. 12, 1973, p. 30-54. Zbl0246.47017MR342880
- [16] M. Reed, B. Simon, Methods of modern mathematical physics. I-IV. New York, New York, San Francisco, London, Academic Press, 1972-1979. Zbl0825.76397MR751959
- [17] D. Robert, H. Tamura, Semi-classical bounds for resolvents of Schrödinger operators and asymptotics for scattering phase. Commun. in PDE, t. 9, 1984, p. 1017- 1058. Zbl0561.35021MR755930
- [18] D. Robert, H. Tamura, Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections. Preprint. Zbl0648.35066
- [19] S.L. Robinson, The semiclassical limit of quantum dynamics. I: Time evolution; II: Scattering theory. Preprints. Zbl0666.35071MR927028
- [20] B. Simon, Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math., t. 120, 1984, p. 89-118. Zbl0626.35070MR750717
- [21] B. Simon, Semiclassical analysis of low lying eigenvalues. IV. Flea of elephants. J. Funct. Anal., t. 63, 1985, p. 123-136. Zbl0652.35090MR795520
- [22] B.R. Vainverg, Quasi-classical approximation in stationary scattering problems, Funct. Anal. Appl., t. 11, 1977, p. 6-18.
- [23] D.R. Yafaev, The eikonal approximation and the asymptotics of the total cross–section for the Schrödinger equation. Ann. Inst. Henri Poincaré, t. 44, 1986, p. 397- 425. Zbl0608.35054MR850898
- [24] K. Yajima, The quasi-classical limit of scattering amplitude, Finite range potentials. Springer lecture notes in math., t. 1159, 1985, p. 242-263. Zbl0591.35079MR824991
- [25] K. Yajima, The quasi-classical limit of scattering amplitude, L2-approach for short range potentials. Japan. J. Math., t. 13, 1987, p. 77-126. Zbl0648.35067MR914315
- [26] K. Yajima, Private communication.
- [27] P. Briet, J.M. Combes, P. Duclos, On the location of resonances for Schrodinger operators in the semiclassical limit : Resonance free domains. To appear in J. Math. Anal. Appl. Zbl0629.47043
- [28] P. Briet, J.M. Combes, P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit: II. Barrier top resonances. Commun. in PDE, t. 12, 1987, p. 201-222. Zbl0622.47047MR876987
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.