Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances
Jean-François Bony[1]; Setsuro Fujiié[2]; Thierry Ramond[3]; Maher Zerzeri[4]
- [1] Université Bordeaux 1 IMB (UMR CNRS 5251) 33405 Talence (France)
- [2] University of Hyogo Graduate School of Material Science (Japan)
- [3] Université Paris Sud 11 LMO (UMR CNRS 8628) 91405 Orsay (France)
- [4] Université Paris 13 LAGA (UMR CNRS 7539) 93430 Villetaneuse (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 4, page 1351-1406
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBony, Jean-François, et al. "Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances." Annales de l’institut Fourier 61.4 (2011): 1351-1406. <http://eudml.org/doc/219775>.
@article{Bony2011,
abstract = {We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of $h$, and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we give an expansion for large times of the Schrödinger group in terms of these resonances.},
affiliation = {Université Bordeaux 1 IMB (UMR CNRS 5251) 33405 Talence (France); University of Hyogo Graduate School of Material Science (Japan); Université Paris Sud 11 LMO (UMR CNRS 8628) 91405 Orsay (France); Université Paris 13 LAGA (UMR CNRS 7539) 93430 Villetaneuse (France)},
author = {Bony, Jean-François, Fujiié, Setsuro, Ramond, Thierry, Zerzeri, Maher},
journal = {Annales de l’institut Fourier},
keywords = {Schrödinger operator; quantum resonances; semiclassical analysis; resolvent estimate},
language = {eng},
number = {4},
pages = {1351-1406},
publisher = {Association des Annales de l’institut Fourier},
title = {Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances},
url = {http://eudml.org/doc/219775},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Bony, Jean-François
AU - Fujiié, Setsuro
AU - Ramond, Thierry
AU - Zerzeri, Maher
TI - Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1351
EP - 1406
AB - We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of $h$, and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we give an expansion for large times of the Schrödinger group in terms of these resonances.
LA - eng
KW - Schrödinger operator; quantum resonances; semiclassical analysis; resolvent estimate
UR - http://eudml.org/doc/219775
ER -
References
top- Ivana Alexandrova, Jean-François Bony, Thierry Ramond, Semiclassical scattering amplitude at the maximum of the potential, Asymptot. Anal. 58 (2008), 57-125 Zbl1163.35004MR2429063
- Jean-François Bony, Setsuro Fujiié, Thierry Ramond, Maher Zerzeri, Microlocal kernel of pseudodifferential operators at a hyperbolic fixed point, J. Funct. Anal. 252 (2007), 68-125 Zbl1157.35127MR2357351
- Jean-François Bony, Dietrich Häfner, Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric, Comm. Math. Phys. 282 (2008), 697-719 Zbl1159.35007MR2426141
- Jean-François Bony, Laurent Michel, Microlocalization of resonant states and estimates of the residue of the scattering amplitude, Comm. Math. Phys. 246 (2004), 375-402 Zbl1062.35053MR2048563
- Ph. Briet, J.-M. Combes, P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit. I. Resonances free domains, J. Math. Anal. Appl. 126 (1987), 90-99 Zbl0629.47043MR900530
- Ph. Briet, J.-M. Combes, P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances, Comm. Partial Differential Equations 12 (1987), 201-222 Zbl0622.47047MR876987
- Nicolas Burq, Maciej Zworski, Resonance expansions in semi-classical propagation, Comm. Math. Phys. 223 (2001), 1-12 Zbl1042.81582MR1860756
- Nicolas Burq, Maciej Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17 (2004), 443-471 Zbl1050.35058MR2051618
- T. Christiansen, M. Zworski, Resonance wave expansions: two hyperbolic examples, Comm. Math. Phys. 212 (2000), 323-336 Zbl0955.58024MR1772249
- Hans Christianson, Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal. 246 (2007), 145-195 Zbl1119.58018MR2321040
- Stephan De Bièvre, Didier Robert, Semiclassical propagation on time scales, Int. Math. Res. Not. (2003), 667-696 Zbl1127.81328MR1951402
- Jan Dereziński, Christian Gérard, Scattering theory of classical and quantum -particle systems, (1997), Springer-Verlag, Berlin Zbl0899.47007MR1459161
- Mouez Dimassi, Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press, Cambridge Zbl0926.35002MR1735654
- C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Mém. Soc. Math. France (N.S.) (1988) Zbl0654.35081MR998698
- C. Gérard, André Martinez, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), 81-110 Zbl0711.35097MR1029851
- C. Gérard, I. M. Sigal, Space-time picture of semiclassical resonances, Comm. Math. Phys. 145 (1992), 281-328 Zbl0755.35102MR1162800
- C. Gérard, J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), 391-421 Zbl0637.35027MR874901
- Colin Guillarmou, Frédéric Naud, Wave decay on convex co-compact hyperbolic manifolds, Comm. Math. Phys. 287 (2009), 489-511 Zbl1196.58011MR2481747
- Andrew Hassell, Richard Melrose, András Vasy, Microlocal propagation near radial points and scattering for symbolic potentials of order zero, Anal. PDE 1 (2008), 127-196 Zbl1152.35454MR2472888
- B. Helffer, André Martinez, Comparaison entre les diverses notions de résonances, Helv. Phys. Acta 60 (1987), 992-1003 MR929933
- B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit. III. Interaction through nonresonant wells, Math. Nachr. 124 (1985), 263-313 Zbl0597.35023MR827902
- B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986) Zbl0631.35075MR871788
- Michael Hitrik, Johannes Sjöstrand, San Vũ Ngọc, Diophantine tori and spectral asymptotics for nonselfadjoint operators, Amer. J. Math. 129 (2007), 105-182 Zbl1172.35085MR2288739
- W. Hunziker, Distortion analyticity and molecular resonance curves, Ann. Inst. H. Poincaré Phys. Théor. 45 (1986), 339-358 Zbl0619.46068MR880742
- Hiroshi Isozaki, Hitoshi Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), 77-104 Zbl0582.35036MR783182
- Hiroshi Isozaki, Hitoshi Kitada, Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ. Tokyo 35 (1986), 81-107 Zbl0615.35065MR847881
- Nourredine Kaidi, Philippe Kerdelhué, Forme normale de Birkhoff et résonances, Asymptot. Anal. 23 (2000), 1-21 Zbl0955.35009MR1764337
- Amina Lahmar-Benbernou, Estimation des résidus de la matrice de diffusion associés à des résonances de forme. I, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), 303-338 Zbl0944.35060MR1714347
- Amina Lahmar-Benbernou, André Martinez, Semiclassical asymptotics of the residues of the scattering matrix for shape resonances, Asymptot. Anal. 20 (1999), 13-38 Zbl0931.35119MR1697827
- Peter D. Lax, Ralph S. Phillips, Scattering theory, 26 (1989), Academic Press Inc., Boston, MA Zbl0697.35004MR1037774
- A. Martinez, Resonance free domains for non globally analytic potentials, Ann. Henri Poincaré 3 (2002), 739-756 Zbl1026.81012MR1933368
- Laurent Michel, Semi-classical estimate of the residues of the scattering amplitude for long-range potentials, J. Phys. A 36 (2003), 4375-4393 Zbl1113.81119MR1984509
- Shu Nakamura, Scattering theory for the shape resonance model. I. Nonresonant energies, Ann. Inst. H. Poincaré Phys. Théor. 50 (1989), 115-131 Zbl0686.35090MR1002815
- Shu Nakamura, Scattering theory for the shape resonance model. II. Resonance scattering, Ann. Inst. H. Poincaré Phys. Théor. 50 (1989), 133-142 Zbl0686.35091MR1002816
- Shu Nakamura, Plamen Stefanov, Maciej Zworski, Resonance expansions of propagators in the presence of potential barriers, J. Funct. Anal. 205 (2003), 180-205 Zbl1037.35064MR2020213
- Thierry Ramond, Semiclassical study of quantum scattering on the line, Comm. Math. Phys. 177 (1996), 221-254 Zbl0848.34074MR1382227
- J. Sjöstrand, Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986) 1256 (1987), 402-429, Springer, Berlin Zbl0627.35074MR897789
- J. Sjöstrand, A trace formula and review of some estimates for resonances, Microlocal analysis and spectral theory (Lucca, 1996) 490 (1997), 377-437, Kluwer Acad. Publ., Dordrecht Zbl0877.35090MR1451399
- Johannes Sjöstrand, Maciej Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769 Zbl0752.35046MR1115789
- Plamen Stefanov, Estimates on the residue of the scattering amplitude, Asymptot. Anal. 32 (2002), 317-333 Zbl1060.35097MR1993653
- Siu-Hung Tang, Maciej Zworski, From quasimodes to reasonances, Math. Res. Lett. 5 (1998), 261-272 Zbl0913.35101MR1637824
- Siu-Hung Tang, Maciej Zworski, Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53 (2000), 1305-1334 Zbl1032.35148MR1768812
- B. R. Vaĭnberg, Asymptotic methods in equations of mathematical physics, (1989), Gordon & Breach Science Publishers, New York Zbl0743.35001MR1054376
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.