Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances

Jean-François Bony[1]; Setsuro Fujiié[2]; Thierry Ramond[3]; Maher Zerzeri[4]

  • [1] Université Bordeaux 1 IMB (UMR CNRS 5251) 33405 Talence (France)
  • [2] University of Hyogo Graduate School of Material Science (Japan)
  • [3] Université Paris Sud 11 LMO (UMR CNRS 8628) 91405 Orsay (France)
  • [4] Université Paris 13 LAGA (UMR CNRS 7539) 93430 Villetaneuse (France)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 4, page 1351-1406
  • ISSN: 0373-0956

Abstract

top
We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of h , and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we give an expansion for large times of the Schrödinger group in terms of these resonances.

How to cite

top

Bony, Jean-François, et al. "Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances." Annales de l’institut Fourier 61.4 (2011): 1351-1406. <http://eudml.org/doc/219775>.

@article{Bony2011,
abstract = {We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of $h$, and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we give an expansion for large times of the Schrödinger group in terms of these resonances.},
affiliation = {Université Bordeaux 1 IMB (UMR CNRS 5251) 33405 Talence (France); University of Hyogo Graduate School of Material Science (Japan); Université Paris Sud 11 LMO (UMR CNRS 8628) 91405 Orsay (France); Université Paris 13 LAGA (UMR CNRS 7539) 93430 Villetaneuse (France)},
author = {Bony, Jean-François, Fujiié, Setsuro, Ramond, Thierry, Zerzeri, Maher},
journal = {Annales de l’institut Fourier},
keywords = {Schrödinger operator; quantum resonances; semiclassical analysis; resolvent estimate},
language = {eng},
number = {4},
pages = {1351-1406},
publisher = {Association des Annales de l’institut Fourier},
title = {Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances},
url = {http://eudml.org/doc/219775},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Bony, Jean-François
AU - Fujiié, Setsuro
AU - Ramond, Thierry
AU - Zerzeri, Maher
TI - Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1351
EP - 1406
AB - We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of $h$, and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually, we give an expansion for large times of the Schrödinger group in terms of these resonances.
LA - eng
KW - Schrödinger operator; quantum resonances; semiclassical analysis; resolvent estimate
UR - http://eudml.org/doc/219775
ER -

References

top
  1. Ivana Alexandrova, Jean-François Bony, Thierry Ramond, Semiclassical scattering amplitude at the maximum of the potential, Asymptot. Anal. 58 (2008), 57-125 Zbl1163.35004MR2429063
  2. Jean-François Bony, Setsuro Fujiié, Thierry Ramond, Maher Zerzeri, Microlocal kernel of pseudodifferential operators at a hyperbolic fixed point, J. Funct. Anal. 252 (2007), 68-125 Zbl1157.35127MR2357351
  3. Jean-François Bony, Dietrich Häfner, Decay and non-decay of the local energy for the wave equation on the de Sitter-Schwarzschild metric, Comm. Math. Phys. 282 (2008), 697-719 Zbl1159.35007MR2426141
  4. Jean-François Bony, Laurent Michel, Microlocalization of resonant states and estimates of the residue of the scattering amplitude, Comm. Math. Phys. 246 (2004), 375-402 Zbl1062.35053MR2048563
  5. Ph. Briet, J.-M. Combes, P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit. I. Resonances free domains, J. Math. Anal. Appl. 126 (1987), 90-99 Zbl0629.47043MR900530
  6. Ph. Briet, J.-M. Combes, P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances, Comm. Partial Differential Equations 12 (1987), 201-222 Zbl0622.47047MR876987
  7. Nicolas Burq, Maciej Zworski, Resonance expansions in semi-classical propagation, Comm. Math. Phys. 223 (2001), 1-12 Zbl1042.81582MR1860756
  8. Nicolas Burq, Maciej Zworski, Geometric control in the presence of a black box, J. Amer. Math. Soc. 17 (2004), 443-471 Zbl1050.35058MR2051618
  9. T. Christiansen, M. Zworski, Resonance wave expansions: two hyperbolic examples, Comm. Math. Phys. 212 (2000), 323-336 Zbl0955.58024MR1772249
  10. Hans Christianson, Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal. 246 (2007), 145-195 Zbl1119.58018MR2321040
  11. Stephan De Bièvre, Didier Robert, Semiclassical propagation on | log | time scales, Int. Math. Res. Not. (2003), 667-696 Zbl1127.81328MR1951402
  12. Jan Dereziński, Christian Gérard, Scattering theory of classical and quantum N -particle systems, (1997), Springer-Verlag, Berlin Zbl0899.47007MR1459161
  13. Mouez Dimassi, Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press, Cambridge Zbl0926.35002MR1735654
  14. C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Mém. Soc. Math. France (N.S.) (1988) Zbl0654.35081MR998698
  15. C. Gérard, André Martinez, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), 81-110 Zbl0711.35097MR1029851
  16. C. Gérard, I. M. Sigal, Space-time picture of semiclassical resonances, Comm. Math. Phys. 145 (1992), 281-328 Zbl0755.35102MR1162800
  17. C. Gérard, J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), 391-421 Zbl0637.35027MR874901
  18. Colin Guillarmou, Frédéric Naud, Wave decay on convex co-compact hyperbolic manifolds, Comm. Math. Phys. 287 (2009), 489-511 Zbl1196.58011MR2481747
  19. Andrew Hassell, Richard Melrose, András Vasy, Microlocal propagation near radial points and scattering for symbolic potentials of order zero, Anal. PDE 1 (2008), 127-196 Zbl1152.35454MR2472888
  20. B. Helffer, André Martinez, Comparaison entre les diverses notions de résonances, Helv. Phys. Acta 60 (1987), 992-1003 MR929933
  21. B. Helffer, J. Sjöstrand, Multiple wells in the semiclassical limit. III. Interaction through nonresonant wells, Math. Nachr. 124 (1985), 263-313 Zbl0597.35023MR827902
  22. B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986) Zbl0631.35075MR871788
  23. Michael Hitrik, Johannes Sjöstrand, San Vũ Ngọc, Diophantine tori and spectral asymptotics for nonselfadjoint operators, Amer. J. Math. 129 (2007), 105-182 Zbl1172.35085MR2288739
  24. W. Hunziker, Distortion analyticity and molecular resonance curves, Ann. Inst. H. Poincaré Phys. Théor. 45 (1986), 339-358 Zbl0619.46068MR880742
  25. Hiroshi Isozaki, Hitoshi Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), 77-104 Zbl0582.35036MR783182
  26. Hiroshi Isozaki, Hitoshi Kitada, Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ. Tokyo 35 (1986), 81-107 Zbl0615.35065MR847881
  27. Nourredine Kaidi, Philippe Kerdelhué, Forme normale de Birkhoff et résonances, Asymptot. Anal. 23 (2000), 1-21 Zbl0955.35009MR1764337
  28. Amina Lahmar-Benbernou, Estimation des résidus de la matrice de diffusion associés à des résonances de forme. I, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), 303-338 Zbl0944.35060MR1714347
  29. Amina Lahmar-Benbernou, André Martinez, Semiclassical asymptotics of the residues of the scattering matrix for shape resonances, Asymptot. Anal. 20 (1999), 13-38 Zbl0931.35119MR1697827
  30. Peter D. Lax, Ralph S. Phillips, Scattering theory, 26 (1989), Academic Press Inc., Boston, MA Zbl0697.35004MR1037774
  31. A. Martinez, Resonance free domains for non globally analytic potentials, Ann. Henri Poincaré 3 (2002), 739-756 Zbl1026.81012MR1933368
  32. Laurent Michel, Semi-classical estimate of the residues of the scattering amplitude for long-range potentials, J. Phys. A 36 (2003), 4375-4393 Zbl1113.81119MR1984509
  33. Shu Nakamura, Scattering theory for the shape resonance model. I. Nonresonant energies, Ann. Inst. H. Poincaré Phys. Théor. 50 (1989), 115-131 Zbl0686.35090MR1002815
  34. Shu Nakamura, Scattering theory for the shape resonance model. II. Resonance scattering, Ann. Inst. H. Poincaré Phys. Théor. 50 (1989), 133-142 Zbl0686.35091MR1002816
  35. Shu Nakamura, Plamen Stefanov, Maciej Zworski, Resonance expansions of propagators in the presence of potential barriers, J. Funct. Anal. 205 (2003), 180-205 Zbl1037.35064MR2020213
  36. Thierry Ramond, Semiclassical study of quantum scattering on the line, Comm. Math. Phys. 177 (1996), 221-254 Zbl0848.34074MR1382227
  37. J. Sjöstrand, Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986) 1256 (1987), 402-429, Springer, Berlin Zbl0627.35074MR897789
  38. J. Sjöstrand, A trace formula and review of some estimates for resonances, Microlocal analysis and spectral theory (Lucca, 1996) 490 (1997), 377-437, Kluwer Acad. Publ., Dordrecht Zbl0877.35090MR1451399
  39. Johannes Sjöstrand, Maciej Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769 Zbl0752.35046MR1115789
  40. Plamen Stefanov, Estimates on the residue of the scattering amplitude, Asymptot. Anal. 32 (2002), 317-333 Zbl1060.35097MR1993653
  41. Siu-Hung Tang, Maciej Zworski, From quasimodes to reasonances, Math. Res. Lett. 5 (1998), 261-272 Zbl0913.35101MR1637824
  42. Siu-Hung Tang, Maciej Zworski, Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53 (2000), 1305-1334 Zbl1032.35148MR1768812
  43. B. R. Vaĭnberg, Asymptotic methods in equations of mathematical physics, (1989), Gordon & Breach Science Publishers, New York Zbl0743.35001MR1054376

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.