Geometric quantization of the MIC-Kepler problem via extension of the phase space
Annales de l'I.H.P. Physique théorique (1989)
- Volume: 50, Issue: 2, page 219-227
- ISSN: 0246-0211
Access Full Article
topHow to cite
topMladenov, Ivailo M.. "Geometric quantization of the MIC-Kepler problem via extension of the phase space." Annales de l'I.H.P. Physique théorique 50.2 (1989): 219-227. <http://eudml.org/doc/76445>.
@article{Mladenov1989,
author = {Mladenov, Ivailo M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {geometric quantization scheme; extended phase space; modified Kepler problem; quantization of the magnetic charge; energy spectrum of the corresponding quantum problem},
language = {eng},
number = {2},
pages = {219-227},
publisher = {Gauthier-Villars},
title = {Geometric quantization of the MIC-Kepler problem via extension of the phase space},
url = {http://eudml.org/doc/76445},
volume = {50},
year = {1989},
}
TY - JOUR
AU - Mladenov, Ivailo M.
TI - Geometric quantization of the MIC-Kepler problem via extension of the phase space
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 219
EP - 227
LA - eng
KW - geometric quantization scheme; extended phase space; modified Kepler problem; quantization of the magnetic charge; energy spectrum of the corresponding quantum problem
UR - http://eudml.org/doc/76445
ER -
References
top- [1] J. Marsden, A. Weinstein, Reduction of Symplectic Manifolds with Symmetry. Rep. Math. Phys., vol. 5, 1974, p. 121-130. Zbl0327.58005MR402819
- [2] B. Kostant, Quantization and Unitary Representations, Lecture Notes in Mathematics, vol. 170, 1970, p. 87-208. Zbl0223.53028MR294568
- [3] J.M. Souriau, Structure des Systèmes Dynamiques, Dunod, Paris, 1970. Zbl0186.58001MR260238
- [4] M. Puta, On the Reduced Phase Space of a Cotangent Bundle. Lett. Math. Phys., t. 8, 1984, p. 189-194. Zbl0557.58012MR750032
- [5] V. Guillemin, S. Sternberg, Geometric Quantization and Multiplicities of Group Representations. Invent. Math., t. 67, 1982, p. 515-538. Zbl0503.58018MR664118
- [6] M. Gotay, Constraints, Reduction and Quantization. J. Math. Phys., t. 27, 1986, p. 2051-2066. Zbl0632.58020MR850590
- [7] M. Kummer, On the Construction of the Reduced Phase Space of a Hamiltonian System with Symmetry. Indiana Univ. Math. J., t. 30, 1981, p. 281-291. Zbl0425.70019MR604285
- [8] R. Abraham, J. Marsden, Foundation of Mechanics. Benjamin, Mass. 1978.
- [9] G. Marmo, E. Saletan, A. Simoni, B. Vitale, Dynamical Systems. A Différential Geometric Approach to Symmetry and Reduction, Wiley, Chichester, 1985. Zbl0592.58031MR818988
- [10] P. Libermann, C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht, 1987. Zbl0643.53002MR882548
- [11] T. Iwai, Y. Uwano, The Four-Dimensional Conformal Kepler Problem Reduces to the Three-Dimensional Kepler Problem with a Centrifugal Potential and Dirac's Monopole Field. Classical Theory. J. Math. Phys., t. 27, 1986, p. 1523-1529. Zbl0599.70015MR843720
- [12] I. Mladenov, V. Tsanov, Geometric Quantisation of the MIC-Kepler Problem. J. Phys. A. Math. Gen., t. 20, 1987, p. 5865-5871. Zbl0658.58051MR939893
- [13] M. Kibler, T. Negadi, The Use of Nonbijective Canonical Transformations in Chemical Physics. Croatica Chem. Acta, t. 57, 1984, p. 1509-1523.
- [14] L. Davtyan, L. Mardoyan, G. Pogosyan, A. Sissakian, V. Ter-Antonyan, Generalized KS Transformation: From Five-Dimensional Hydrogen Atom to EightDimensional Isotrope Oscillator. J. Phys. A. Math. Gen., t. 20, 1987, p. 6121-6125. MR939909
- [15] L. Bates, Ph.D. Thesis, University of Calgary, 1988.
- [16] B. Cordani, L. Feher, P. Horvathy, Monopole Scattering Spectrum from Geometric Quantisation. J. Phys. A. Math. Gen., t. 21, 1988, p. 2835-2837. Zbl0672.58054MR953452
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.