Geometric quantization of the MIC-Kepler problem via extension of the phase space

Ivailo M. Mladenov

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 50, Issue: 2, page 219-227
  • ISSN: 0246-0211

How to cite

top

Mladenov, Ivailo M.. "Geometric quantization of the MIC-Kepler problem via extension of the phase space." Annales de l'I.H.P. Physique théorique 50.2 (1989): 219-227. <http://eudml.org/doc/76445>.

@article{Mladenov1989,
author = {Mladenov, Ivailo M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {geometric quantization scheme; extended phase space; modified Kepler problem; quantization of the magnetic charge; energy spectrum of the corresponding quantum problem},
language = {eng},
number = {2},
pages = {219-227},
publisher = {Gauthier-Villars},
title = {Geometric quantization of the MIC-Kepler problem via extension of the phase space},
url = {http://eudml.org/doc/76445},
volume = {50},
year = {1989},
}

TY - JOUR
AU - Mladenov, Ivailo M.
TI - Geometric quantization of the MIC-Kepler problem via extension of the phase space
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 219
EP - 227
LA - eng
KW - geometric quantization scheme; extended phase space; modified Kepler problem; quantization of the magnetic charge; energy spectrum of the corresponding quantum problem
UR - http://eudml.org/doc/76445
ER -

References

top
  1. [1] J. Marsden, A. Weinstein, Reduction of Symplectic Manifolds with Symmetry. Rep. Math. Phys., vol. 5, 1974, p. 121-130. Zbl0327.58005MR402819
  2. [2] B. Kostant, Quantization and Unitary Representations, Lecture Notes in Mathematics, vol. 170, 1970, p. 87-208. Zbl0223.53028MR294568
  3. [3] J.M. Souriau, Structure des Systèmes Dynamiques, Dunod, Paris, 1970. Zbl0186.58001MR260238
  4. [4] M. Puta, On the Reduced Phase Space of a Cotangent Bundle. Lett. Math. Phys., t. 8, 1984, p. 189-194. Zbl0557.58012MR750032
  5. [5] V. Guillemin, S. Sternberg, Geometric Quantization and Multiplicities of Group Representations. Invent. Math., t. 67, 1982, p. 515-538. Zbl0503.58018MR664118
  6. [6] M. Gotay, Constraints, Reduction and Quantization. J. Math. Phys., t. 27, 1986, p. 2051-2066. Zbl0632.58020MR850590
  7. [7] M. Kummer, On the Construction of the Reduced Phase Space of a Hamiltonian System with Symmetry. Indiana Univ. Math. J., t. 30, 1981, p. 281-291. Zbl0425.70019MR604285
  8. [8] R. Abraham, J. Marsden, Foundation of Mechanics. Benjamin, Mass. 1978. 
  9. [9] G. Marmo, E. Saletan, A. Simoni, B. Vitale, Dynamical Systems. A Différential Geometric Approach to Symmetry and Reduction, Wiley, Chichester, 1985. Zbl0592.58031MR818988
  10. [10] P. Libermann, C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht, 1987. Zbl0643.53002MR882548
  11. [11] T. Iwai, Y. Uwano, The Four-Dimensional Conformal Kepler Problem Reduces to the Three-Dimensional Kepler Problem with a Centrifugal Potential and Dirac's Monopole Field. Classical Theory. J. Math. Phys., t. 27, 1986, p. 1523-1529. Zbl0599.70015MR843720
  12. [12] I. Mladenov, V. Tsanov, Geometric Quantisation of the MIC-Kepler Problem. J. Phys. A. Math. Gen., t. 20, 1987, p. 5865-5871. Zbl0658.58051MR939893
  13. [13] M. Kibler, T. Negadi, The Use of Nonbijective Canonical Transformations in Chemical Physics. Croatica Chem. Acta, t. 57, 1984, p. 1509-1523. 
  14. [14] L. Davtyan, L. Mardoyan, G. Pogosyan, A. Sissakian, V. Ter-Antonyan, Generalized KS Transformation: From Five-Dimensional Hydrogen Atom to EightDimensional Isotrope Oscillator. J. Phys. A. Math. Gen., t. 20, 1987, p. 6121-6125. MR939909
  15. [15] L. Bates, Ph.D. Thesis, University of Calgary, 1988. 
  16. [16] B. Cordani, L. Feher, P. Horvathy, Monopole Scattering Spectrum from Geometric Quantisation. J. Phys. A. Math. Gen., t. 21, 1988, p. 2835-2837. Zbl0672.58054MR953452

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.