The Tomita operator for the free scalar field

Franca Figliolini; Daniele Guido

Annales de l'I.H.P. Physique théorique (1989)

  • Volume: 51, Issue: 4, page 419-435
  • ISSN: 0246-0211

How to cite

top

Figliolini, Franca, and Guido, Daniele. "The Tomita operator for the free scalar field." Annales de l'I.H.P. Physique théorique 51.4 (1989): 419-435. <http://eudml.org/doc/76475>.

@article{Figliolini1989,
author = {Figliolini, Franca, Guido, Daniele},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Tomita operator; local algebra of the free scalar field; second quantization structure of the free fields; time zero formulation},
language = {eng},
number = {4},
pages = {419-435},
publisher = {Gauthier-Villars},
title = {The Tomita operator for the free scalar field},
url = {http://eudml.org/doc/76475},
volume = {51},
year = {1989},
}

TY - JOUR
AU - Figliolini, Franca
AU - Guido, Daniele
TI - The Tomita operator for the free scalar field
JO - Annales de l'I.H.P. Physique théorique
PY - 1989
PB - Gauthier-Villars
VL - 51
IS - 4
SP - 419
EP - 435
LA - eng
KW - Tomita operator; local algebra of the free scalar field; second quantization structure of the free fields; time zero formulation
UR - http://eudml.org/doc/76475
ER -

References

top
  1. [1] H. Araki, A Lattice of von Neumann Algebras Associated with the Quantum Field Theory of a Free Bose Field, J. Math. Phys., Vol. 4, 1963, pp. 1343-1362. Zbl0132.43805MR158666
  2. [2] G. Benfatto and F. Nicolo, The Local von Neumann Algebras for the Massless Scalar Free Field and the Free Electromagnetic Field, J. Math. Phys., Vol. 19, 1978. MR468828
  3. [3] J.J. Bisognano and E.H. Wichmann, On the Duality Condition for an Hermitian Scalar Field, J. Math. Phys., Vol. 16, 1975, p. 985. Zbl0316.46062MR438943
  4. [4] G.F. Dell'Antonio, Structure of the Algebras of Some Free Systems, Comm. Math. Phys., Vol. 9, 1968, pp.81-117. Zbl0159.29002MR231598
  5. [5] J.P. Eckmann and K. Osterwalder, An Application of Tomita's Theory of Modular Hilbert Algebras: Duality for Free Bose Field, J. Funct. Analysis, Vol. 13, 1973, pp. 1- 22. Zbl0262.46068MR345548
  6. [6] F. Figliolini and D. Guido, The type of Second Quantization Factors, Preprint. Zbl0847.46042MR1331775
  7. [7] R. Haag, N.M. Hugenoltz and M. Winnik, On the Equilibrium States in Quantum Statistical Mechanics, Comm. Math. Phys., Vol. 5, 1967, pp. 215-236. Zbl0171.47102MR219283
  8. [8] P. Hislop and R. Longo, Modular Structure of the Local Observables Associated with the Free Massless Scalar Field Theory, Comm. Math. Phys., Vol. 84, 1982. Zbl0491.46060MR660540
  9. [9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1984. 
  10. [10] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary value problems and applications I, Springer-Verlag, Berlin, 1972. Zbl0223.35039
  11. [11] G.V. Maz'ja, Sobolev Spaces, Springer-Verlag, Berlin, 1985. MR817985
  12. [12] J.E. Roberts, P. Leyland and D. Testard, Duality for Quantum Free Fields, unpublished paper. 
  13. [13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I and II, Academic Press, 1975. Zbl0308.47002
  14. [14] Segal and Goodman, Anti-Locality of Certain Invariant Operators, J. Math. Mech., Vol. 14, 1965. Zbl0151.44201
  15. [15] G.L. Sewell, Relativity of Temperature and Hawking Effect, Phys. Lett., Vol. 79A, 1980, p. 23. MR597629
  16. [16] E.C. Zeeman, Causality Implies the Lorentz Group, J. Math. Phys., Vol. 5, 1964. Zbl0133.23205MR162587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.