The Tomita operator for the free scalar field
Franca Figliolini; Daniele Guido
Annales de l'I.H.P. Physique théorique (1989)
- Volume: 51, Issue: 4, page 419-435
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] H. Araki, A Lattice of von Neumann Algebras Associated with the Quantum Field Theory of a Free Bose Field, J. Math. Phys., Vol. 4, 1963, pp. 1343-1362. Zbl0132.43805MR158666
- [2] G. Benfatto and F. Nicolo, The Local von Neumann Algebras for the Massless Scalar Free Field and the Free Electromagnetic Field, J. Math. Phys., Vol. 19, 1978. MR468828
- [3] J.J. Bisognano and E.H. Wichmann, On the Duality Condition for an Hermitian Scalar Field, J. Math. Phys., Vol. 16, 1975, p. 985. Zbl0316.46062MR438943
- [4] G.F. Dell'Antonio, Structure of the Algebras of Some Free Systems, Comm. Math. Phys., Vol. 9, 1968, pp.81-117. Zbl0159.29002MR231598
- [5] J.P. Eckmann and K. Osterwalder, An Application of Tomita's Theory of Modular Hilbert Algebras: Duality for Free Bose Field, J. Funct. Analysis, Vol. 13, 1973, pp. 1- 22. Zbl0262.46068MR345548
- [6] F. Figliolini and D. Guido, The type of Second Quantization Factors, Preprint. Zbl0847.46042MR1331775
- [7] R. Haag, N.M. Hugenoltz and M. Winnik, On the Equilibrium States in Quantum Statistical Mechanics, Comm. Math. Phys., Vol. 5, 1967, pp. 215-236. Zbl0171.47102MR219283
- [8] P. Hislop and R. Longo, Modular Structure of the Local Observables Associated with the Free Massless Scalar Field Theory, Comm. Math. Phys., Vol. 84, 1982. Zbl0491.46060MR660540
- [9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1984.
- [10] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary value problems and applications I, Springer-Verlag, Berlin, 1972. Zbl0223.35039
- [11] G.V. Maz'ja, Sobolev Spaces, Springer-Verlag, Berlin, 1985. MR817985
- [12] J.E. Roberts, P. Leyland and D. Testard, Duality for Quantum Free Fields, unpublished paper.
- [13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I and II, Academic Press, 1975. Zbl0308.47002
- [14] Segal and Goodman, Anti-Locality of Certain Invariant Operators, J. Math. Mech., Vol. 14, 1965. Zbl0151.44201
- [15] G.L. Sewell, Relativity of Temperature and Hawking Effect, Phys. Lett., Vol. 79A, 1980, p. 23. MR597629
- [16] E.C. Zeeman, Causality Implies the Lorentz Group, J. Math. Phys., Vol. 5, 1964. Zbl0133.23205MR162587