Temperature states on gauge groups

A. L. Carey; K. C. Hannabuss

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 57, Issue: 3, page 219-257
  • ISSN: 0246-0211

How to cite

top

Carey, A. L., and Hannabuss, K. C.. "Temperature states on gauge groups." Annales de l'I.H.P. Physique théorique 57.3 (1992): 219-257. <http://eudml.org/doc/76586>.

@article{Carey1992,
author = {Carey, A. L., Hannabuss, K. C.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {gauge group; temperature state; Kac-Moody extension; infinite dimensional Lie group; type factor representations; Kac-Moody algebras; KMS states on twisted group -algebras},
language = {eng},
number = {3},
pages = {219-257},
publisher = {Gauthier-Villars},
title = {Temperature states on gauge groups},
url = {http://eudml.org/doc/76586},
volume = {57},
year = {1992},
}

TY - JOUR
AU - Carey, A. L.
AU - Hannabuss, K. C.
TI - Temperature states on gauge groups
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 57
IS - 3
SP - 219
EP - 257
LA - eng
KW - gauge group; temperature state; Kac-Moody extension; infinite dimensional Lie group; type factor representations; Kac-Moody algebras; KMS states on twisted group -algebras
UR - http://eudml.org/doc/76586
ER -

References

top
  1. [1] H. Araki, On quasi-free states of the CAR and Bogoliubov automorphisms, Publ. Res. Inst. Math. Sci., Vol. 6, 1970, pp. 385-442. Zbl0227.46061MR295702
  2. [2] H. Araki and E.J. Woods, Representations of the canonical commutation relations describing a non-relativistic free Bose-gas, J. Math. Phys., Vol. 4, 1963, pp. 637-662. MR152295
  3. [3] H. Araki, Bogoliubov automorphisms and Fock representations of canonical anticommutation relations, in Contemporary Mathematics, Amer. Math. Soc., Vol. 62, 1987, pp. 23-141. Zbl0614.46058MR878376
  4. [4] L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Func. Analysis, Vol. 14, 1978, pp. 299-324. Zbl0286.22005MR364537
  5. [5] O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics II, Springer, New York, 1979. Zbl0463.46052MR611508
  6. [6] A.L. Carey and S.N.M. Ruijsenaars, On fermion gauge groups, current algebras and Kac-Moody algebras, Acta App. Math., Vol. 10, 1987, pp. 1-86. Zbl0644.22012MR904924
  7. [7] A.L. Carey, Some infinite dimensional groups and bundles, Publ. R.LM.S., Kyoto, Vol. 20, 1984, pp. 1103-1117. Zbl0575.46059MR775124
  8. [8] A.L. Carey, C.A. Hurst and D.M. O'Brien, Automorphisms of the canonical anticommutation relations and index theory, J. Func. Analysis, Vol. 48, 1982, pp, 360- 393. Zbl0498.46051MR678177
  9. [9] A.L. Carey and D.M. O'Brien, Absence of vacuum polarisation in Fock space, Lett. Math. Phys., Vol. 6, 1982, pp. 335-340. Zbl0515.46074MR677434
  10. [10] A.L. Carey and K.C. Hannabuss, Temperature states on loop groups theta functions and the Luttinger model, J. Func. Analysis, Vol. 75, 1987, pp. 128-160. Zbl0633.46068MR911203
  11. [11] A.L. Carey and C.A. Hurst, A note on the boson-fermion correspondence and infinite dimensional groups, Commun. Math. Phys., Vol. 98, 1985, pp. 435-448. Zbl0577.46067MR789865
  12. [12] A.L. Carey, S.N.M. Ruijsenaars and J.D. Wright, The massless Thirring model: positivity of Klauber's n-point functions, Commun. Math. Phys., Vol. 99, 1985, pp. 347- 364. MR795108
  13. [13] A. Connes, Non-commutative differential geometry, Publ. I.H.E.S., Vol. 62, 1985. Zbl0592.46056
  14. [14] L. Dolan and R. Jackiw, Symmetry behaviour at finite temperature, Phys. Rev., Vol. D9, 1974, pp. 3320-3329. 
  15. [15] R.G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972. Zbl0247.47001MR361893
  16. [16] I.B. Frenkel, Two constructions of affine Lie algebra representations and the boson-fermion correspondence in quantum field theory, J. Func. Analysis, Vol. 44, 1981, pp. 259-357. Zbl0479.17003MR643037
  17. [17] I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math., Vol. 62, 1980, pp. 23-66. Zbl0493.17010MR595581
  18. [18] K.C. Hannabuss, Representations of nilpotent locally compact groups, J. Func. Analysis, Vol. 34, 1979, pp. 164-165. Zbl0431.22007MR551115
  19. [19] K.C. Hannabuss, Characters and contact transformations, Math. Proc. Camb. Phil. Soc., Vol. 90, 1981, pp. 465-476. Zbl0476.46052MR628829
  20. [20] J. Lewis and V. Pulé, The equilibrium states of the free Boson gas, Commun. Math. Phys., Vol. 36, 1974. MR339746
  21. [21] J. Lewis, The free boson gas, in Mathematics of Contemporary Physics, R. F. STREATER Ed., Academic Press, London, 1972. 
  22. [22] L.E. Lundberg, Quasi-free second quantisation, Commun. Math. Phys., Vol. 50, 1976, pp. 103-112. Zbl0336.46062MR432037
  23. [23] G.W. Mackey, Acta Math., Vol. 99, 1958, pp. 265-311. Zbl0082.11301MR98328
  24. [24] J. Milnor, Remarks on infinite-dimensional Lie groups, Les Houches, Summer School, 1983, B. DEWITT Ed. Zbl0594.22009MR830252
  25. [25] G.K. Pedersen, C*-algebras and their automorphism groups, Academic Press, London- New York, 1979. Zbl0416.46043MR548006
  26. [26] R. Powers and E. Størmer, Free states of the canonical anticommutation relations, Commun. Math. Phys., Vol. 16, 1970, pp. 1-33. Zbl0186.28301MR269230
  27. [27] M. Reed and B. Simon, Methods of modern mathematical physics IV: scattering theory, Academic Press, New York, 1979. Zbl0405.47007MR751959
  28. [28] F. Rocca, M. Sirugue and D. Testard, Commun. Math. Phys., Vol. 19, 1970, pp. 119- 141. MR269253
  29. [29] G.B. Segal, Unitary representations of some infinite dimensional groups, Commun. Math. Phys., Vol. 80, 1981, pp. 301-362. Zbl0495.22017MR626704
  30. [30] G.B. Segal, Jacobi's identity and an isomorphism between a symmetric algebra and an exterior algebra, Oxford lectures and unpublished manuscript. Zbl0533.22003
  31. [31] G.B. Segal, Loop groups, Springer Lecture Notes in Math., Vol. III, 1984, pp. 155- 168, and A.N. Pressley and G.B. Segal, Loop groups, Oxford University Press, Oxford, 1986. Zbl0601.22011
  32. [32] A. Van Daele and A. Verbeure, Quasi-equivalence of quasifree states on the Weyl algebra, Commun. Math. Phys., Vol. 21, 1971, pp. 171-191. Zbl0211.44002MR287844

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.