Temperature states on gauge groups
Annales de l'I.H.P. Physique théorique (1992)
- Volume: 57, Issue: 3, page 219-257
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCarey, A. L., and Hannabuss, K. C.. "Temperature states on gauge groups." Annales de l'I.H.P. Physique théorique 57.3 (1992): 219-257. <http://eudml.org/doc/76586>.
@article{Carey1992,
author = {Carey, A. L., Hannabuss, K. C.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {gauge group; temperature state; Kac-Moody extension; infinite dimensional Lie group; type factor representations; Kac-Moody algebras; KMS states on twisted group -algebras},
language = {eng},
number = {3},
pages = {219-257},
publisher = {Gauthier-Villars},
title = {Temperature states on gauge groups},
url = {http://eudml.org/doc/76586},
volume = {57},
year = {1992},
}
TY - JOUR
AU - Carey, A. L.
AU - Hannabuss, K. C.
TI - Temperature states on gauge groups
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 57
IS - 3
SP - 219
EP - 257
LA - eng
KW - gauge group; temperature state; Kac-Moody extension; infinite dimensional Lie group; type factor representations; Kac-Moody algebras; KMS states on twisted group -algebras
UR - http://eudml.org/doc/76586
ER -
References
top- [1] H. Araki, On quasi-free states of the CAR and Bogoliubov automorphisms, Publ. Res. Inst. Math. Sci., Vol. 6, 1970, pp. 385-442. Zbl0227.46061MR295702
- [2] H. Araki and E.J. Woods, Representations of the canonical commutation relations describing a non-relativistic free Bose-gas, J. Math. Phys., Vol. 4, 1963, pp. 637-662. MR152295
- [3] H. Araki, Bogoliubov automorphisms and Fock representations of canonical anticommutation relations, in Contemporary Mathematics, Amer. Math. Soc., Vol. 62, 1987, pp. 23-141. Zbl0614.46058MR878376
- [4] L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Func. Analysis, Vol. 14, 1978, pp. 299-324. Zbl0286.22005MR364537
- [5] O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics II, Springer, New York, 1979. Zbl0463.46052MR611508
- [6] A.L. Carey and S.N.M. Ruijsenaars, On fermion gauge groups, current algebras and Kac-Moody algebras, Acta App. Math., Vol. 10, 1987, pp. 1-86. Zbl0644.22012MR904924
- [7] A.L. Carey, Some infinite dimensional groups and bundles, Publ. R.LM.S., Kyoto, Vol. 20, 1984, pp. 1103-1117. Zbl0575.46059MR775124
- [8] A.L. Carey, C.A. Hurst and D.M. O'Brien, Automorphisms of the canonical anticommutation relations and index theory, J. Func. Analysis, Vol. 48, 1982, pp, 360- 393. Zbl0498.46051MR678177
- [9] A.L. Carey and D.M. O'Brien, Absence of vacuum polarisation in Fock space, Lett. Math. Phys., Vol. 6, 1982, pp. 335-340. Zbl0515.46074MR677434
- [10] A.L. Carey and K.C. Hannabuss, Temperature states on loop groups theta functions and the Luttinger model, J. Func. Analysis, Vol. 75, 1987, pp. 128-160. Zbl0633.46068MR911203
- [11] A.L. Carey and C.A. Hurst, A note on the boson-fermion correspondence and infinite dimensional groups, Commun. Math. Phys., Vol. 98, 1985, pp. 435-448. Zbl0577.46067MR789865
- [12] A.L. Carey, S.N.M. Ruijsenaars and J.D. Wright, The massless Thirring model: positivity of Klauber's n-point functions, Commun. Math. Phys., Vol. 99, 1985, pp. 347- 364. MR795108
- [13] A. Connes, Non-commutative differential geometry, Publ. I.H.E.S., Vol. 62, 1985. Zbl0592.46056
- [14] L. Dolan and R. Jackiw, Symmetry behaviour at finite temperature, Phys. Rev., Vol. D9, 1974, pp. 3320-3329.
- [15] R.G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972. Zbl0247.47001MR361893
- [16] I.B. Frenkel, Two constructions of affine Lie algebra representations and the boson-fermion correspondence in quantum field theory, J. Func. Analysis, Vol. 44, 1981, pp. 259-357. Zbl0479.17003MR643037
- [17] I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math., Vol. 62, 1980, pp. 23-66. Zbl0493.17010MR595581
- [18] K.C. Hannabuss, Representations of nilpotent locally compact groups, J. Func. Analysis, Vol. 34, 1979, pp. 164-165. Zbl0431.22007MR551115
- [19] K.C. Hannabuss, Characters and contact transformations, Math. Proc. Camb. Phil. Soc., Vol. 90, 1981, pp. 465-476. Zbl0476.46052MR628829
- [20] J. Lewis and V. Pulé, The equilibrium states of the free Boson gas, Commun. Math. Phys., Vol. 36, 1974. MR339746
- [21] J. Lewis, The free boson gas, in Mathematics of Contemporary Physics, R. F. STREATER Ed., Academic Press, London, 1972.
- [22] L.E. Lundberg, Quasi-free second quantisation, Commun. Math. Phys., Vol. 50, 1976, pp. 103-112. Zbl0336.46062MR432037
- [23] G.W. Mackey, Acta Math., Vol. 99, 1958, pp. 265-311. Zbl0082.11301MR98328
- [24] J. Milnor, Remarks on infinite-dimensional Lie groups, Les Houches, Summer School, 1983, B. DEWITT Ed. Zbl0594.22009MR830252
- [25] G.K. Pedersen, C*-algebras and their automorphism groups, Academic Press, London- New York, 1979. Zbl0416.46043MR548006
- [26] R. Powers and E. Størmer, Free states of the canonical anticommutation relations, Commun. Math. Phys., Vol. 16, 1970, pp. 1-33. Zbl0186.28301MR269230
- [27] M. Reed and B. Simon, Methods of modern mathematical physics IV: scattering theory, Academic Press, New York, 1979. Zbl0405.47007MR751959
- [28] F. Rocca, M. Sirugue and D. Testard, Commun. Math. Phys., Vol. 19, 1970, pp. 119- 141. MR269253
- [29] G.B. Segal, Unitary representations of some infinite dimensional groups, Commun. Math. Phys., Vol. 80, 1981, pp. 301-362. Zbl0495.22017MR626704
- [30] G.B. Segal, Jacobi's identity and an isomorphism between a symmetric algebra and an exterior algebra, Oxford lectures and unpublished manuscript. Zbl0533.22003
- [31] G.B. Segal, Loop groups, Springer Lecture Notes in Math., Vol. III, 1984, pp. 155- 168, and A.N. Pressley and G.B. Segal, Loop groups, Oxford University Press, Oxford, 1986. Zbl0601.22011
- [32] A. Van Daele and A. Verbeure, Quasi-equivalence of quasifree states on the Weyl algebra, Commun. Math. Phys., Vol. 21, 1971, pp. 171-191. Zbl0211.44002MR287844
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.