The four positive vortices problem : regions of chaotic behavior and the non-integrability

M. S. A. C. Castilla; Vinicio Moauro; Piero Negrini; Waldyr Muniz Oliva

Annales de l'I.H.P. Physique théorique (1993)

  • Volume: 59, Issue: 1, page 99-115
  • ISSN: 0246-0211

How to cite

top

Castilla, M. S. A. C., et al. "The four positive vortices problem : regions of chaotic behavior and the non-integrability." Annales de l'I.H.P. Physique théorique 59.1 (1993): 99-115. <http://eudml.org/doc/76617>.

@article{Castilla1993,
author = {Castilla, M. S. A. C., Moauro, Vinicio, Negrini, Piero, Oliva, Waldyr Muniz},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {perturbation; planar autonomous Hamiltonian system; saddle connections; periodically time-dependent Hamiltonian system},
language = {eng},
number = {1},
pages = {99-115},
publisher = {Gauthier-Villars},
title = {The four positive vortices problem : regions of chaotic behavior and the non-integrability},
url = {http://eudml.org/doc/76617},
volume = {59},
year = {1993},
}

TY - JOUR
AU - Castilla, M. S. A. C.
AU - Moauro, Vinicio
AU - Negrini, Piero
AU - Oliva, Waldyr Muniz
TI - The four positive vortices problem : regions of chaotic behavior and the non-integrability
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 59
IS - 1
SP - 99
EP - 115
LA - eng
KW - perturbation; planar autonomous Hamiltonian system; saddle connections; periodically time-dependent Hamiltonian system
UR - http://eudml.org/doc/76617
ER -

References

top
  1. [A - P] H. Aref and N. Pomphrey, Integrable and chaotic Motions of Four Vortices I. The Case of Identical Vortices, Proc. R. Soc. London, Ser. A, Vol. 380, 1982, pp. 359-387. Zbl0483.76031MR660416
  2. [C-M] A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer Verlag, 1979. Zbl0417.76002MR551053
  3. [H] P.J. Holmes, Averaging and Chaotic Motions in Forced Oscillations, S.I.A.M. J. Appl. Math., Vol. 38, 1, 1980, pp. 65-79. Errata, Vol. 40, 1, 1981, pp. 167-168. Zbl0472.70024MR559081
  4. [K] K.M. Khanin, Quasi-Periodic Motions on Vortex Systems, Physics, Vol. 4D, 1982, pp. 261-269. Zbl1194.76028MR653779
  5. [K-C] J. Koiller and S. Carvalho, Non-Integrability of the 4-Vortex System, Analytical Proof, Comm. Math. Phys., Vol. 120, 1989, pp. 643-652. Zbl0825.58013MR987772
  6. [M-C] C. Marchioro and M. Pulvirenti, Vortex Methods in Two Dimensional Fluid Dynamics, Edizioni Klim, Roma, 1983. Zbl0545.76027MR750980
  7. [M] V.K. Melnikov, On the Stability of the Center for Time-Periodic Perturbations, Trans. Moscow Math. Soc., Vol. 12, 1, 1963, pp. 1-57. Zbl0135.31001MR156048
  8. [Mo] J. Moser, Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, Princeton N.J., Univ. of Tokyo Press, Tokyo, 1973. MR442980
  9. [O1] W.M. Oliva, Integrability Problems in Hamiltonian Systems, Ravello (Italy), XVI Summer School on Mathematical Physics, 1991. 
  10. [O2] W.M. Oliva, On the chaotic behaviour and non integrability of the four vortices problems, Ann. Inst. H. Poincaré, Vol. 55, 21, 1991, pp. 707-718. Zbl0738.76008MR1139542
  11. [S] S. Smale, The Mathematics of Time. Essays on Dynamical Systems. Economic Process and Related Topics, Springer-Verlag, 1980. Zbl0451.58001MR607330
  12. [Sy] J.L. Synge, On the Motion of Three Vortices, Can. Journal of Math., Vol. 1, 1949, pp. 257-270. Zbl0032.22303MR30841
  13. [Z] S.L. Ziglin, Non Integrability of a Problem on the Motion of Four Point Vortices, Soviet. Math. Dokl., Vol. 21, 1, 1980, pp. 296-299. Zbl0464.76021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.