Spherical symmetry in classical and quantum Galilei general relativity

Raffaele Vitolo

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 2, page 177-203
  • ISSN: 0246-0211

How to cite

top

Vitolo, Raffaele. "Spherical symmetry in classical and quantum Galilei general relativity." Annales de l'I.H.P. Physique théorique 64.2 (1996): 177-203. <http://eudml.org/doc/76712>.

@article{Vitolo1996,
author = {Vitolo, Raffaele},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Newton-Cartan theory; spherical symmetry; existence and uniqueness; quantum theory; spinless particle},
language = {eng},
number = {2},
pages = {177-203},
publisher = {Gauthier-Villars},
title = {Spherical symmetry in classical and quantum Galilei general relativity},
url = {http://eudml.org/doc/76712},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Vitolo, Raffaele
TI - Spherical symmetry in classical and quantum Galilei general relativity
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 2
SP - 177
EP - 203
LA - eng
KW - Newton-Cartan theory; spherical symmetry; existence and uniqueness; quantum theory; spinless particle
UR - http://eudml.org/doc/76712
ER -

References

top
  1. [1] E. Cartan, On manifolds with an affine connection and the theory of general relativity, Bibliopolis, Napoli, 1986. Zbl0657.53001MR881216
  2. [2] A. Cabras, D. Canarutto, I. Kolar and M. Modugno, Structured bundles, Pitagora, Bologna, 1990. 
  3. [3] D. Canarutto, A. Jadczyk and M. Modugno, Quantum mechanics of spin particle in a curved spacetime with absolute time, to appear in Rep. Math. Phys. Zbl0888.53052
  4. [4] C. Duval, G. Burdet, H.P. Künzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev.D, Vol. 31, No 8, 1985, pp. 1841-1853. MR787753
  5. [5] C. Duval and H.P. Künzle, Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, G.R.G., Vol. 16, No. 4, 1984, pp. 333-347. MR741410
  6. [6] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, II ed., Springer Verlag, Berlin, 1990. Zbl0716.53001MR1083149
  7. [7] S. Hawking and G. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge, 1973. Zbl0265.53054MR424186
  8. [8] J. Janyska, Remarks on symplectic forms in general relativity, 1993, to appear. 
  9. [9] A. Jadczyk and M. Modugno, A scheme for Galilei general relativistic quantum mechanics, in Proceedings of the 10th Italian Conference on General Relativity and Gravitational Physics, World Scientific, New York, 1993. Zbl1004.83518
  10. [10] A. Jadczyk and M. Modugno, Galilei General Relativistic Quantum Mechanics, 1993, book preprint. MR1212817
  11. [11] H.P. Künzle and C. Duval, Dirac field on Newtonian spacetime, Ann. Inst. H. Poinc., Vol. 41, No. 4, 1984, pp. 363-384. Zbl0583.53061MR777912
  12. [12] W. Klingenberg, Riemannian Geometry, de Gryter Studies in Math.1, de Gruyter, Berlin, 1982. Zbl0495.53036MR666697
  13. [13] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York, 1963. Zbl0119.37502MR152974
  14. [14] K. Kuchar, Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D., Vol. 22, No. 6, 1980, pp. 1285-1299. MR586704
  15. [15] H.P. Künzle, General covariance and minimal gravitational coupling in Newtonian spacetime, in Geometrodynamics Proceedings, 1983, A. Prastaro ed., Tecnoprint, Bologna, 1984, pp. 37-48. MR823714
  16. [16] S. Lang, Differential Manifolds, Addison-Wesley, Reading (Ma), 1972. Zbl0239.58001MR431240
  17. [17] L. Mangiarotti and M. Modugno, Fibered Spaces, Jet Spaces and Connections for Field Theories, in Proceed of Int. Meet. on Geometry and Physics, Pitagora ed., Bologna, 1983, pp. 135-165. Zbl0539.53026MR760841
  18. [18] E. Prugovecki, Quantum geometry. A Framework for quantum general relativity, Kluwer Academic Publishers, 1992. Zbl0748.53058MR1158875
  19. [19] E. Prugovecki, On the general covariance and strong equivalence principles in quantum general relativity, preprint, 1993. MR1293617
  20. [20] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. press, 1951. Zbl0054.07103MR39258
  21. [21] R.K. Sachs and H. Wu, General Relativity and Cosmology, Bull. of Amer. Math. Soc., Vol. 83, 1976, pp. 1101-1164. Zbl0376.53038MR503499
  22. [22] A. Trautman, Sur la théorie Newtonienne de la gravitation, C. R. Acad. Sci. Paris, Vol. 257, 1963, pp. 617-620. Zbl0115.43105MR154718
  23. [23] A. Trautman, Comparison of Newtonian and relativistic theories of space-time, in Perspectives in geometry and relativity (Essays in Honour of V. Hlavaty, No 42, Indiana Univ. press, 1966, pp. 413-425. MR202450

NotesEmbed ?

top

You must be logged in to post comments.