Spherical symmetry in classical and quantum Galilei general relativity
Annales de l'I.H.P. Physique théorique (1996)
- Volume: 64, Issue: 2, page 177-203
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] E. Cartan, On manifolds with an affine connection and the theory of general relativity, Bibliopolis, Napoli, 1986. Zbl0657.53001MR881216
- [2] A. Cabras, D. Canarutto, I. Kolar and M. Modugno, Structured bundles, Pitagora, Bologna, 1990.
- [3] D. Canarutto, A. Jadczyk and M. Modugno, Quantum mechanics of spin particle in a curved spacetime with absolute time, to appear in Rep. Math. Phys. Zbl0888.53052
- [4] C. Duval, G. Burdet, H.P. Künzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev.D, Vol. 31, No 8, 1985, pp. 1841-1853. MR787753
- [5] C. Duval and H.P. Künzle, Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, G.R.G., Vol. 16, No. 4, 1984, pp. 333-347. MR741410
- [6] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, II ed., Springer Verlag, Berlin, 1990. Zbl0716.53001MR1083149
- [7] S. Hawking and G. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge, 1973. Zbl0265.53054MR424186
- [8] J. Janyska, Remarks on symplectic forms in general relativity, 1993, to appear.
- [9] A. Jadczyk and M. Modugno, A scheme for Galilei general relativistic quantum mechanics, in Proceedings of the 10th Italian Conference on General Relativity and Gravitational Physics, World Scientific, New York, 1993. Zbl1004.83518
- [10] A. Jadczyk and M. Modugno, Galilei General Relativistic Quantum Mechanics, 1993, book preprint. MR1212817
- [11] H.P. Künzle and C. Duval, Dirac field on Newtonian spacetime, Ann. Inst. H. Poinc., Vol. 41, No. 4, 1984, pp. 363-384. Zbl0583.53061MR777912
- [12] W. Klingenberg, Riemannian Geometry, de Gryter Studies in Math.1, de Gruyter, Berlin, 1982. Zbl0495.53036MR666697
- [13] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York, 1963. Zbl0119.37502MR152974
- [14] K. Kuchar, Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D., Vol. 22, No. 6, 1980, pp. 1285-1299. MR586704
- [15] H.P. Künzle, General covariance and minimal gravitational coupling in Newtonian spacetime, in Geometrodynamics Proceedings, 1983, A. Prastaro ed., Tecnoprint, Bologna, 1984, pp. 37-48. MR823714
- [16] S. Lang, Differential Manifolds, Addison-Wesley, Reading (Ma), 1972. Zbl0239.58001MR431240
- [17] L. Mangiarotti and M. Modugno, Fibered Spaces, Jet Spaces and Connections for Field Theories, in Proceed of Int. Meet. on Geometry and Physics, Pitagora ed., Bologna, 1983, pp. 135-165. Zbl0539.53026MR760841
- [18] E. Prugovecki, Quantum geometry. A Framework for quantum general relativity, Kluwer Academic Publishers, 1992. Zbl0748.53058MR1158875
- [19] E. Prugovecki, On the general covariance and strong equivalence principles in quantum general relativity, preprint, 1993. MR1293617
- [20] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. press, 1951. Zbl0054.07103MR39258
- [21] R.K. Sachs and H. Wu, General Relativity and Cosmology, Bull. of Amer. Math. Soc., Vol. 83, 1976, pp. 1101-1164. Zbl0376.53038MR503499
- [22] A. Trautman, Sur la théorie Newtonienne de la gravitation, C. R. Acad. Sci. Paris, Vol. 257, 1963, pp. 617-620. Zbl0115.43105MR154718
- [23] A. Trautman, Comparison of Newtonian and relativistic theories of space-time, in Perspectives in geometry and relativity (Essays in Honour of V. Hlavaty, No 42, Indiana Univ. press, 1966, pp. 413-425. MR202450