Spherical symmetry in classical and quantum Galilei general relativity

Raffaele Vitolo

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 2, page 177-203
  • ISSN: 0246-0211

How to cite

top

Vitolo, Raffaele. "Spherical symmetry in classical and quantum Galilei general relativity." Annales de l'I.H.P. Physique théorique 64.2 (1996): 177-203. <http://eudml.org/doc/76712>.

@article{Vitolo1996,
author = {Vitolo, Raffaele},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Newton-Cartan theory; spherical symmetry; existence and uniqueness; quantum theory; spinless particle},
language = {eng},
number = {2},
pages = {177-203},
publisher = {Gauthier-Villars},
title = {Spherical symmetry in classical and quantum Galilei general relativity},
url = {http://eudml.org/doc/76712},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Vitolo, Raffaele
TI - Spherical symmetry in classical and quantum Galilei general relativity
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 2
SP - 177
EP - 203
LA - eng
KW - Newton-Cartan theory; spherical symmetry; existence and uniqueness; quantum theory; spinless particle
UR - http://eudml.org/doc/76712
ER -

References

top
  1. [1] E. Cartan, On manifolds with an affine connection and the theory of general relativity, Bibliopolis, Napoli, 1986. Zbl0657.53001MR881216
  2. [2] A. Cabras, D. Canarutto, I. Kolar and M. Modugno, Structured bundles, Pitagora, Bologna, 1990. 
  3. [3] D. Canarutto, A. Jadczyk and M. Modugno, Quantum mechanics of spin particle in a curved spacetime with absolute time, to appear in Rep. Math. Phys. Zbl0888.53052
  4. [4] C. Duval, G. Burdet, H.P. Künzle and M. Perrin, Bargmann structures and Newton-Cartan theory, Phys. Rev.D, Vol. 31, No 8, 1985, pp. 1841-1853. MR787753
  5. [5] C. Duval and H.P. Künzle, Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, G.R.G., Vol. 16, No. 4, 1984, pp. 333-347. MR741410
  6. [6] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, II ed., Springer Verlag, Berlin, 1990. Zbl0716.53001MR1083149
  7. [7] S. Hawking and G. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge, 1973. Zbl0265.53054MR424186
  8. [8] J. Janyska, Remarks on symplectic forms in general relativity, 1993, to appear. 
  9. [9] A. Jadczyk and M. Modugno, A scheme for Galilei general relativistic quantum mechanics, in Proceedings of the 10th Italian Conference on General Relativity and Gravitational Physics, World Scientific, New York, 1993. Zbl1004.83518
  10. [10] A. Jadczyk and M. Modugno, Galilei General Relativistic Quantum Mechanics, 1993, book preprint. MR1212817
  11. [11] H.P. Künzle and C. Duval, Dirac field on Newtonian spacetime, Ann. Inst. H. Poinc., Vol. 41, No. 4, 1984, pp. 363-384. Zbl0583.53061MR777912
  12. [12] W. Klingenberg, Riemannian Geometry, de Gryter Studies in Math.1, de Gruyter, Berlin, 1982. Zbl0495.53036MR666697
  13. [13] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York, 1963. Zbl0119.37502MR152974
  14. [14] K. Kuchar, Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D., Vol. 22, No. 6, 1980, pp. 1285-1299. MR586704
  15. [15] H.P. Künzle, General covariance and minimal gravitational coupling in Newtonian spacetime, in Geometrodynamics Proceedings, 1983, A. Prastaro ed., Tecnoprint, Bologna, 1984, pp. 37-48. MR823714
  16. [16] S. Lang, Differential Manifolds, Addison-Wesley, Reading (Ma), 1972. Zbl0239.58001MR431240
  17. [17] L. Mangiarotti and M. Modugno, Fibered Spaces, Jet Spaces and Connections for Field Theories, in Proceed of Int. Meet. on Geometry and Physics, Pitagora ed., Bologna, 1983, pp. 135-165. Zbl0539.53026MR760841
  18. [18] E. Prugovecki, Quantum geometry. A Framework for quantum general relativity, Kluwer Academic Publishers, 1992. Zbl0748.53058MR1158875
  19. [19] E. Prugovecki, On the general covariance and strong equivalence principles in quantum general relativity, preprint, 1993. MR1293617
  20. [20] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. press, 1951. Zbl0054.07103MR39258
  21. [21] R.K. Sachs and H. Wu, General Relativity and Cosmology, Bull. of Amer. Math. Soc., Vol. 83, 1976, pp. 1101-1164. Zbl0376.53038MR503499
  22. [22] A. Trautman, Sur la théorie Newtonienne de la gravitation, C. R. Acad. Sci. Paris, Vol. 257, 1963, pp. 617-620. Zbl0115.43105MR154718
  23. [23] A. Trautman, Comparison of Newtonian and relativistic theories of space-time, in Perspectives in geometry and relativity (Essays in Honour of V. Hlavaty, No 42, Indiana Univ. press, 1966, pp. 413-425. MR202450

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.