The classification of S U ( 3 ) modular invariants revisited

Terry Gannon

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 65, Issue: 1, page 15-55
  • ISSN: 0246-0211

How to cite

top

Gannon, Terry. "The classification of $SU(3)$ modular invariants revisited." Annales de l'I.H.P. Physique théorique 65.1 (1996): 15-55. <http://eudml.org/doc/76734>.

@article{Gannon1996,
author = {Gannon, Terry},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {modular invariant partition function; WZW classification; parity rule; automorphism invariant},
language = {eng},
number = {1},
pages = {15-55},
publisher = {Gauthier-Villars},
title = {The classification of $SU(3)$ modular invariants revisited},
url = {http://eudml.org/doc/76734},
volume = {65},
year = {1996},
}

TY - JOUR
AU - Gannon, Terry
TI - The classification of $SU(3)$ modular invariants revisited
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 65
IS - 1
SP - 15
EP - 55
LA - eng
KW - modular invariant partition function; WZW classification; parity rule; automorphism invariant
UR - http://eudml.org/doc/76734
ER -

References

top
  1. [1] T. Gannon, The classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys., Vol. 161, 1994, pp. 233-264. Zbl0806.17031MR1266482
  2. [2] G. Moore and N. Seiberg, Naturality in conformal field theory, Nucl. Phys., Vol. B313, 1989, pp. 16-40. MR984288
  3. [3] V.G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. Zbl0716.17022MR1104219
  4. [4] V.G. Kac and D. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math., Vol. 53, 1984, pp. 125-264. Zbl0584.17007MR750341
  5. [5] M. Bauer and C. Itzykson, Modular transformations of SU(N) affine characters and their commutant, Commun. Math. Phys., Vol. 127, 1990, pp. 617-636. Zbl0703.17017MR1040899
  6. [6] Ph. Ruelle, E. Thiran and J. Weyers, Modular invariants for affine Su(3) theories at prime heights, Comm. Math. Phys., Vol. 133, 1990, pp. 305-322. Zbl0718.17023MR1090427
  7. [7] T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl. Phys., Vol. B396, 1993, pp. 708-736. MR1218796
  8. [8] Ph. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B402, 1993, pp. 693-708. Zbl1043.81698MR1236194
  9. [9] Ph. Ruelle, Automorphisms of the affine SU(3) fusion rules, Commun. Math. Phys., Vol. 160, 1994, pp. 475-492. Zbl0816.17010MR1266059
  10. [10] N. Koblitz and D. Rohrlich, Simple factors in the Jacobian of a Fermat curve, Can. J. Math., Vol. XXX, 1978, pp. 1183-1205. Zbl0399.14023MR511556
  11. [11] Y. Stanev, Classification of the local extensions of the SU(3) chiral current algebra, Vienna preprint ESI-19, 1993. MR1322684
  12. [12] L. Begin, P. Mathieu and M. Walton, su(3)k fusion coefficients, Mod. Phys. Lett., Vol. A7, 1992, pp. 3255-3265. Zbl1021.81530MR1191281
  13. [13] T. Gannon and M.A. Walton, On the classification of diagonal coset modular invariants, Commun. Math. Phys., Vol. 173, 1995, pp. 175-198. Zbl0833.17026MR1355623
  14. [14] D. Altschuler J. Lacki and Ph. Zaugg, The affine Weyl group and modular invariant partition functions, Phys. Lett., Vol. B205, 1988, pp. 281-284. MR940411
  15. [15] D. Bernard, String characters from Kac-Moody automorphisms, Nucl. Phys., Vol. B288, 1987, pp. 628-648. MR892062
  16. [16] P. Christe and F. Ravanani, GN ⊗ GN+L conformal field theories and their modular invariant partition functions, Int. J. Mod. Phys., Vol. A4, 1989, pp. 897-920. Zbl0696.17013
  17. [17] T. Gannon, Towards a classification of SU(2) ⊕ ... ⊕ SU(2) modular invariant partition functions, J. Math. Phys., Vol. 36, 1995, pp. 675-706. Zbl0833.17025MR1312071
  18. [18] F.R. Gantmacher, The theory of matrices, Vol. II, Chesea Publishing Co., New York, 1964. Zbl0085.01001
  19. [19] A. Coste and T. Gannon, Remarks on Galois symmetry in RCFT, Phys. Lett., Vol. B323, 1994, pp. 316-321. 
  20. [20] N. Bourbaki, Groupes et Algèbres de Lie, Chapitre IV-VI, Hermann, Paris, 1968. MR240238
  21. [21] T. Gannon and Q. Ho-Kim, The low level modular invariant partition functions or rank 2 algebras, Int. J. Mod. Phys., Vol. A9, 1994, pp. 2667-2686. Zbl0985.81532MR1277039
  22. [22] M. Kreuzer and A.N. Schellekens, Simple currents versus orbifolds with discrete torsion a complete classification, Nucl. Phys., Vol. B411, 1994, pp. 97-121. Zbl0921.17010MR1256635
  23. [23] T. Gannon and Q. Ho-Kim, The rank-four heterotic modular invariant partition functions, Nucl. Phys., Vol. B425, 1994, pp. 319-342. Zbl1049.81625MR1292630
  24. [24] A.N. Schellekens, Meromorphic c = 24 conformal field theories, Commun. Math. Phys., Vol. 153, 1993, pp. 159-185; P. Montague, Orbifold construction and the classification of self-dual c = 24 conformal field theories, (hep-th/9403088). Zbl0782.17014MR1213740
  25. [25] T. Gannon, Symmetries of Kac-Peterson modular matrices of affine algebras, Invent. Math., Vol. 122, 1995, pp. 341-357. Zbl0840.17021MR1358980
  26. [26] T. Gannon, Ph. Ruelle and M.A. Walton, Automorphism modular invariants of current algebras, (hep-th/9503141). Zbl0897.17023
  27. [27] J. Fuchs, A.N. Schellekens and C. Schweigert, Galois modular invariants of WZW models, Nucl. Phys., Vol. B437, 1995, pp. 667. Zbl1052.81530MR1321335
  28. [28] A. Cappelli, C. Itzykson and J.-B. Zuber, The A-D-E classification of A(1)1 and minimal conformal field theories, Commun. Math. Phys., Vol. 113, 1987, pp. 1-26. Zbl0639.17008MR918402
  29. [29] T. Gannon, Kac-Peterson, Perron-Frobenius, and the Classification of Conformal Field Theories (q-alg/9510026). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.