The classification of modular invariants revisited
Annales de l'I.H.P. Physique théorique (1996)
- Volume: 65, Issue: 1, page 15-55
- ISSN: 0246-0211
Access Full Article
topHow to cite
topGannon, Terry. "The classification of $SU(3)$ modular invariants revisited." Annales de l'I.H.P. Physique théorique 65.1 (1996): 15-55. <http://eudml.org/doc/76734>.
@article{Gannon1996,
author = {Gannon, Terry},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {modular invariant partition function; WZW classification; parity rule; automorphism invariant},
language = {eng},
number = {1},
pages = {15-55},
publisher = {Gauthier-Villars},
title = {The classification of $SU(3)$ modular invariants revisited},
url = {http://eudml.org/doc/76734},
volume = {65},
year = {1996},
}
TY - JOUR
AU - Gannon, Terry
TI - The classification of $SU(3)$ modular invariants revisited
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 65
IS - 1
SP - 15
EP - 55
LA - eng
KW - modular invariant partition function; WZW classification; parity rule; automorphism invariant
UR - http://eudml.org/doc/76734
ER -
References
top- [1] T. Gannon, The classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys., Vol. 161, 1994, pp. 233-264. Zbl0806.17031MR1266482
- [2] G. Moore and N. Seiberg, Naturality in conformal field theory, Nucl. Phys., Vol. B313, 1989, pp. 16-40. MR984288
- [3] V.G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. Zbl0716.17022MR1104219
- [4] V.G. Kac and D. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math., Vol. 53, 1984, pp. 125-264. Zbl0584.17007MR750341
- [5] M. Bauer and C. Itzykson, Modular transformations of SU(N) affine characters and their commutant, Commun. Math. Phys., Vol. 127, 1990, pp. 617-636. Zbl0703.17017MR1040899
- [6] Ph. Ruelle, E. Thiran and J. Weyers, Modular invariants for affine Su(3) theories at prime heights, Comm. Math. Phys., Vol. 133, 1990, pp. 305-322. Zbl0718.17023MR1090427
- [7] T. Gannon, WZW commutants, lattices, and level-one partition functions, Nucl. Phys., Vol. B396, 1993, pp. 708-736. MR1218796
- [8] Ph. Ruelle, E. Thiran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B402, 1993, pp. 693-708. Zbl1043.81698MR1236194
- [9] Ph. Ruelle, Automorphisms of the affine SU(3) fusion rules, Commun. Math. Phys., Vol. 160, 1994, pp. 475-492. Zbl0816.17010MR1266059
- [10] N. Koblitz and D. Rohrlich, Simple factors in the Jacobian of a Fermat curve, Can. J. Math., Vol. XXX, 1978, pp. 1183-1205. Zbl0399.14023MR511556
- [11] Y. Stanev, Classification of the local extensions of the SU(3) chiral current algebra, Vienna preprint ESI-19, 1993. MR1322684
- [12] L. Begin, P. Mathieu and M. Walton, su(3)k fusion coefficients, Mod. Phys. Lett., Vol. A7, 1992, pp. 3255-3265. Zbl1021.81530MR1191281
- [13] T. Gannon and M.A. Walton, On the classification of diagonal coset modular invariants, Commun. Math. Phys., Vol. 173, 1995, pp. 175-198. Zbl0833.17026MR1355623
- [14] D. Altschuler J. Lacki and Ph. Zaugg, The affine Weyl group and modular invariant partition functions, Phys. Lett., Vol. B205, 1988, pp. 281-284. MR940411
- [15] D. Bernard, String characters from Kac-Moody automorphisms, Nucl. Phys., Vol. B288, 1987, pp. 628-648. MR892062
- [16] P. Christe and F. Ravanani, GN ⊗ GN+L conformal field theories and their modular invariant partition functions, Int. J. Mod. Phys., Vol. A4, 1989, pp. 897-920. Zbl0696.17013
- [17] T. Gannon, Towards a classification of SU(2) ⊕ ... ⊕ SU(2) modular invariant partition functions, J. Math. Phys., Vol. 36, 1995, pp. 675-706. Zbl0833.17025MR1312071
- [18] F.R. Gantmacher, The theory of matrices, Vol. II, Chesea Publishing Co., New York, 1964. Zbl0085.01001
- [19] A. Coste and T. Gannon, Remarks on Galois symmetry in RCFT, Phys. Lett., Vol. B323, 1994, pp. 316-321.
- [20] N. Bourbaki, Groupes et Algèbres de Lie, Chapitre IV-VI, Hermann, Paris, 1968. MR240238
- [21] T. Gannon and Q. Ho-Kim, The low level modular invariant partition functions or rank 2 algebras, Int. J. Mod. Phys., Vol. A9, 1994, pp. 2667-2686. Zbl0985.81532MR1277039
- [22] M. Kreuzer and A.N. Schellekens, Simple currents versus orbifolds with discrete torsion a complete classification, Nucl. Phys., Vol. B411, 1994, pp. 97-121. Zbl0921.17010MR1256635
- [23] T. Gannon and Q. Ho-Kim, The rank-four heterotic modular invariant partition functions, Nucl. Phys., Vol. B425, 1994, pp. 319-342. Zbl1049.81625MR1292630
- [24] A.N. Schellekens, Meromorphic c = 24 conformal field theories, Commun. Math. Phys., Vol. 153, 1993, pp. 159-185; P. Montague, Orbifold construction and the classification of self-dual c = 24 conformal field theories, (hep-th/9403088). Zbl0782.17014MR1213740
- [25] T. Gannon, Symmetries of Kac-Peterson modular matrices of affine algebras, Invent. Math., Vol. 122, 1995, pp. 341-357. Zbl0840.17021MR1358980
- [26] T. Gannon, Ph. Ruelle and M.A. Walton, Automorphism modular invariants of current algebras, (hep-th/9503141). Zbl0897.17023
- [27] J. Fuchs, A.N. Schellekens and C. Schweigert, Galois modular invariants of WZW models, Nucl. Phys., Vol. B437, 1995, pp. 667. Zbl1052.81530MR1321335
- [28] A. Cappelli, C. Itzykson and J.-B. Zuber, The A-D-E classification of A(1)1 and minimal conformal field theories, Commun. Math. Phys., Vol. 113, 1987, pp. 1-26. Zbl0639.17008MR918402
- [29] T. Gannon, Kac-Peterson, Perron-Frobenius, and the Classification of Conformal Field Theories (q-alg/9510026).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.