Scattering of linear Dirac fields by a spherically symmetric Black-Hole
Annales de l'I.H.P. Physique théorique (1995)
- Volume: 62, Issue: 2, page 145-179
- ISSN: 0246-0211
Access Full Article
topHow to cite
topNicolas, J.-P.. "Scattering of linear Dirac fields by a spherically symmetric Black-Hole." Annales de l'I.H.P. Physique théorique 62.2 (1995): 145-179. <http://eudml.org/doc/76672>.
@article{Nicolas1995,
author = {Nicolas, J.-P.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {time-dependent scattering; linear massless Dirac system; spherical black- holes; classical wave operators},
language = {eng},
number = {2},
pages = {145-179},
publisher = {Gauthier-Villars},
title = {Scattering of linear Dirac fields by a spherically symmetric Black-Hole},
url = {http://eudml.org/doc/76672},
volume = {62},
year = {1995},
}
TY - JOUR
AU - Nicolas, J.-P.
TI - Scattering of linear Dirac fields by a spherically symmetric Black-Hole
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 62
IS - 2
SP - 145
EP - 179
LA - eng
KW - time-dependent scattering; linear massless Dirac system; spherical black- holes; classical wave operators
UR - http://eudml.org/doc/76672
ER -
References
top- [1] A. Bachelot, Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric, Internal publication, U.R.A. 226, 1993, to appear in Ann. Inst. Henri-Poincaré, Physique Théorique. Zbl0809.35141MR1311537
- [2] A. Bachelot, Gravitational Scattering of Electromagnetic Field by Schwarzschild Black–Hole, Ann. Inst. Henri-Poincaré-Physique théorique, Vol. 54, No. 3, 1991, pp. 261-320. Zbl0743.53037MR1122656
- [3] A. Bachelot and A. Motet-Bachelot, Les résonances d'un Trou Noir de Schwarzschild, Ann. Inst. Henri-Poincaré, Physique théorique, Vol. 59, No. 1, 1993, pp. 3-68. Zbl0793.53094MR1244181
- [4] D.R. Brill and J.A. Wheeler, Interaction of Neutrinos and Gravitational Fields, Revs. Modern Phys. Vol. 29, 3, 1957, pp. 465-479. Zbl0078.43503MR91828
- [5] Y. Choquet-Bruhat and C. Dewitt, Analysis, manifolds and physics, Part I: basics, Revised edition, 1982, Part II: 92 applications, 1989, North Holland. Zbl0682.58002MR678940
- [6] Th. Damour, Black-Hole eddy currents, Phys. Rev. D18, Vol. 10, 1978, pp. 3598-3604.
- [7] B.S. Dewitt, The space-time approach to quantum field theory, in Relativité, groupes et topologie, les Houches, 1983, North Holland, 1984.
- [8] J. Dimock, Scattering for the wave equation on the Schwarzschild metric, Gen. Relativ. Gravitation, Vol. 17, No. 4, 1985, pp. 353-369. Zbl0618.35088MR788801
- [9] J. Dmock and B.S. Kay, Classical and Quantum Scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Phys. Vol. 175, 1987, pp. 366-426. Zbl0628.53080MR887979
- [10] J. Dollard and G. Velo, Asymptotic behavior of a Dirac particle in a Coulomb field, Il Nuovo Cimento, Vol. 45, 1966, pp. 801-812.
- [11] V. Enss and B. Thaller, Asymptotic observables and Coulomb scattering for the Dirac equation, Ann. Inst. Henri-Poincaré, Vol. 45, 2, 1986, pp. 147-171. Zbl0615.47008MR866913
- [12] I.M. Gel'fand and Z. Ya. Sapiro, Representations of the group of rotations of 3- dimensional space and their applications, Amer. Math. Soc. Transl., Vol. 2, 2, 1956, pp. 207-316. Zbl0070.25902MR76290
- [13] J.-P. Nicolas, Non linear Klein-Gordon equation on Schwarzschild-like metrics, to appear in J. Math. Pures et appliquées.
- [14] J.-P. Nicolas, Opérateur de diffusion pour le système de Dirac en métrique de Schwarzschild, to appear in C. R. Acad. Sci. Paris, Vol. 318, 1994. Zbl0810.35137MR1272337
- [15] R. Penrose and W. Rindler, Spinors and space-time, Cambridge monographs on mathematical physics, Vol. 1, Two-spinor calculus in relativistic fields, Cambridge University Press, 1984. Zbl0538.53024MR776784
- [16] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. III, 1979, Academic Press. Zbl0405.47007
Citations in EuDML Documents
top- Alain Bachelot, Quantum vacuum polarization at the Black-Hole horizon
- Thierry Daudé, Propagation estimates for Dirac operators and application to scattering theory
- A. Bachelot, Diffusion classique et quantique par un trou noir en formation
- Bernard Kay, Application of linear hyperbolic PDE to linear quantum fields in curved spacetimes : especially black holes, time machines and a new semi-local vacuum concept
- Alain Bachelot, L’effet Hawking
- Alain Bachelot, The Hawking effect
- Dietrich Häfner, Jean-Philippe Nicolas, Théorie de la diffusion pour l’équation de Dirac sans masse dans la métrique de Kerr
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.