Scattering of linear Dirac fields by a spherically symmetric Black-Hole

J.-P. Nicolas

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 62, Issue: 2, page 145-179
  • ISSN: 0246-0211

How to cite


Nicolas, J.-P.. "Scattering of linear Dirac fields by a spherically symmetric Black-Hole." Annales de l'I.H.P. Physique théorique 62.2 (1995): 145-179. <>.

author = {Nicolas, J.-P.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {time-dependent scattering; linear massless Dirac system; spherical black- holes; classical wave operators},
language = {eng},
number = {2},
pages = {145-179},
publisher = {Gauthier-Villars},
title = {Scattering of linear Dirac fields by a spherically symmetric Black-Hole},
url = {},
volume = {62},
year = {1995},

AU - Nicolas, J.-P.
TI - Scattering of linear Dirac fields by a spherically symmetric Black-Hole
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 62
IS - 2
SP - 145
EP - 179
LA - eng
KW - time-dependent scattering; linear massless Dirac system; spherical black- holes; classical wave operators
UR -
ER -


  1. [1] A. Bachelot, Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric, Internal publication, U.R.A. 226, 1993, to appear in Ann. Inst. Henri-Poincaré, Physique Théorique. Zbl0809.35141MR1311537
  2. [2] A. Bachelot, Gravitational Scattering of Electromagnetic Field by Schwarzschild Black–Hole, Ann. Inst. Henri-Poincaré-Physique théorique, Vol. 54, No. 3, 1991, pp. 261-320. Zbl0743.53037MR1122656
  3. [3] A. Bachelot and A. Motet-Bachelot, Les résonances d'un Trou Noir de Schwarzschild, Ann. Inst. Henri-Poincaré, Physique théorique, Vol. 59, No. 1, 1993, pp. 3-68. Zbl0793.53094MR1244181
  4. [4] D.R. Brill and J.A. Wheeler, Interaction of Neutrinos and Gravitational Fields, Revs. Modern Phys. Vol. 29, 3, 1957, pp. 465-479. Zbl0078.43503MR91828
  5. [5] Y. Choquet-Bruhat and C. Dewitt, Analysis, manifolds and physics, Part I: basics, Revised edition, 1982, Part II: 92 applications, 1989, North Holland. Zbl0682.58002MR678940
  6. [6] Th. Damour, Black-Hole eddy currents, Phys. Rev. D18, Vol. 10, 1978, pp. 3598-3604. 
  7. [7] B.S. Dewitt, The space-time approach to quantum field theory, in Relativité, groupes et topologie, les Houches, 1983, North Holland, 1984. 
  8. [8] J. Dimock, Scattering for the wave equation on the Schwarzschild metric, Gen. Relativ. Gravitation, Vol. 17, No. 4, 1985, pp. 353-369. Zbl0618.35088MR788801
  9. [9] J. Dmock and B.S. Kay, Classical and Quantum Scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Phys. Vol. 175, 1987, pp. 366-426. Zbl0628.53080MR887979
  10. [10] J. Dollard and G. Velo, Asymptotic behavior of a Dirac particle in a Coulomb field, Il Nuovo Cimento, Vol. 45, 1966, pp. 801-812. 
  11. [11] V. Enss and B. Thaller, Asymptotic observables and Coulomb scattering for the Dirac equation, Ann. Inst. Henri-Poincaré, Vol. 45, 2, 1986, pp. 147-171. Zbl0615.47008MR866913
  12. [12] I.M. Gel'fand and Z. Ya. Sapiro, Representations of the group of rotations of 3- dimensional space and their applications, Amer. Math. Soc. Transl., Vol. 2, 2, 1956, pp. 207-316. Zbl0070.25902MR76290
  13. [13] J.-P. Nicolas, Non linear Klein-Gordon equation on Schwarzschild-like metrics, to appear in J. Math. Pures et appliquées. 
  14. [14] J.-P. Nicolas, Opérateur de diffusion pour le système de Dirac en métrique de Schwarzschild, to appear in C. R. Acad. Sci. Paris, Vol. 318, 1994. Zbl0810.35137MR1272337
  15. [15] R. Penrose and W. Rindler, Spinors and space-time, Cambridge monographs on mathematical physics, Vol. 1, Two-spinor calculus in relativistic fields, Cambridge University Press, 1984. Zbl0538.53024MR776784
  16. [16] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. III, 1979, Academic Press. Zbl0405.47007

Citations in EuDML Documents

  1. Alain Bachelot, Quantum vacuum polarization at the Black-Hole horizon
  2. Thierry Daudé, Propagation estimates for Dirac operators and application to scattering theory
  3. A. Bachelot, Diffusion classique et quantique par un trou noir en formation
  4. Bernard Kay, Application of linear hyperbolic PDE to linear quantum fields in curved spacetimes : especially black holes, time machines and a new semi-local vacuum concept
  5. Alain Bachelot, L’effet Hawking
  6. Alain Bachelot, The Hawking effect
  7. Dietrich Häfner, Jean-Philippe Nicolas, Théorie de la diffusion pour l’équation de Dirac sans masse dans la métrique de Kerr

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.