The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space

M. Nakamura; T. Ozawa

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 71, Issue: 2, page 199-215
  • ISSN: 0246-0211

How to cite

top

Nakamura, M., and Ozawa, T.. "The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space." Annales de l'I.H.P. Physique théorique 71.2 (1999): 199-215. <http://eudml.org/doc/76834>.

@article{Nakamura1999,
author = {Nakamura, M., Ozawa, T.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Strichartz' estimate; minimal regularity; homogeneous Besov estimates; local and global solvability; scattering},
language = {eng},
number = {2},
pages = {199-215},
publisher = {Gauthier-Villars},
title = {The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space},
url = {http://eudml.org/doc/76834},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Nakamura, M.
AU - Ozawa, T.
TI - The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 2
SP - 199
EP - 215
LA - eng
KW - Strichartz' estimate; minimal regularity; homogeneous Besov estimates; local and global solvability; scattering
UR - http://eudml.org/doc/76834
ER -

References

top
  1. [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. Zbl0344.46071MR482275
  2. [2] P. Brenner, On Lp-Lp' estimates for the wave equation, Math. Z.145 (1975) 251-254. Zbl0321.35052MR387819
  3. [3] T. Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in HS, Nonlinear Anal. TMA14 (1990) 807-836. Zbl0706.35127MR1055532
  4. [4] V. Georgiev and P.P. Schirmer, Global existence of low regularity solutions of non-linear wave equations, Math. Z.219 (1995) 1-19. Zbl0824.35074MR1340845
  5. [5] J. Ginibre, Scattering theory in the energy space for a class of nonlinear wave equation, Adv. Stud. Pure Math.23 (1994) 83-103. Zbl0827.35077MR1275396
  6. [6] J. Ginibre, T. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique théorique 60 (1994) 211-239. Zbl0808.35136MR1270296
  7. [7] J. Ginibre, A. Soffer and G. Velo, The global Cauchy problem for the critical non-linear wave equation, J. Funct. Anal.110 (1992) 96-130. Zbl0813.35054MR1190421
  8. [8] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z.189 (1985) 487-505. Zbl0549.35108MR786279
  9. [9] J. Ginibre and G. Velo, Regularity of solutions of critical and subcritical nonlinear wave equations, Nonlinear Anal.22 (1) (1994) 1-19. Zbl0831.35108MR1256167
  10. [10] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1995) 50-68. Zbl0849.35064MR1351643
  11. [11] L.V. Kapitanski, Weak and yet weaker solutions of semilinear wave equations, Comm. Partial Differential Equations19 (1994) 1629-1676. Zbl0831.35109MR1294474
  12. [12] L.V. Kapitanski, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett.1 (1994) 211-223. Zbl0841.35067MR1266760
  13. [13] H. Lindblad, Global solutions of nonlinear wave equations, Comm. Pure Appl. Math.XLV (1992) 1063-1096. Zbl0840.35065MR1177476
  14. [14] H. Lindblad, A sharp counterexample to the lacal existence of low-regularity solutions to nonlinear wave equations, Duke Math. J.72 (1993) 503-539. Zbl0797.35123MR1248683
  15. [15] H. Lindblad and C.D. Sogge, On existince and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal.130 (1995) 357-426. Zbl0846.35085MR1335386
  16. [16] M. Nakamura and T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces, Rev. Math. Phys.9 (3) (1997) 397- 410. Zbl0876.35080MR1446653
  17. [17] M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Preprint. Zbl0958.35011
  18. [18] H. Pecher, Lp-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichumgen, I, Math. Z.150 (1976) 159-183. Zbl0318.35054MR435604
  19. [19] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z.185 (1984) 261-270. Zbl0538.35063MR731347
  20. [20] H. Pecher, Local solutions of semilinear wave equations in Hs+1, Math. Methods Appl. Sci.19 (1996) 145-170. Zbl0845.35069MR1368792
  21. [21] R.S. Strichartz, Convolution with kernels having singularities on a sphere, Trans. AMS148 (1970) 461-471. Zbl0199.17502MR256219
  22. [22] R.S. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Anal.5 (1970) 218-235. Zbl0189.40701MR257581
  23. [23] R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44 (1977) 705-714. Zbl0372.35001MR512086
  24. [24] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. Zbl0546.46027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.