The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 71, Issue: 2, page 199-215
- ISSN: 0246-0211
Access Full Article
topHow to cite
topNakamura, M., and Ozawa, T.. "The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space." Annales de l'I.H.P. Physique théorique 71.2 (1999): 199-215. <http://eudml.org/doc/76834>.
@article{Nakamura1999,
author = {Nakamura, M., Ozawa, T.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Strichartz' estimate; minimal regularity; homogeneous Besov estimates; local and global solvability; scattering},
language = {eng},
number = {2},
pages = {199-215},
publisher = {Gauthier-Villars},
title = {The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space},
url = {http://eudml.org/doc/76834},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Nakamura, M.
AU - Ozawa, T.
TI - The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 2
SP - 199
EP - 215
LA - eng
KW - Strichartz' estimate; minimal regularity; homogeneous Besov estimates; local and global solvability; scattering
UR - http://eudml.org/doc/76834
ER -
References
top- [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. Zbl0344.46071MR482275
- [2] P. Brenner, On Lp-Lp' estimates for the wave equation, Math. Z.145 (1975) 251-254. Zbl0321.35052MR387819
- [3] T. Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in HS, Nonlinear Anal. TMA14 (1990) 807-836. Zbl0706.35127MR1055532
- [4] V. Georgiev and P.P. Schirmer, Global existence of low regularity solutions of non-linear wave equations, Math. Z.219 (1995) 1-19. Zbl0824.35074MR1340845
- [5] J. Ginibre, Scattering theory in the energy space for a class of nonlinear wave equation, Adv. Stud. Pure Math.23 (1994) 83-103. Zbl0827.35077MR1275396
- [6] J. Ginibre, T. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique théorique 60 (1994) 211-239. Zbl0808.35136MR1270296
- [7] J. Ginibre, A. Soffer and G. Velo, The global Cauchy problem for the critical non-linear wave equation, J. Funct. Anal.110 (1992) 96-130. Zbl0813.35054MR1190421
- [8] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z.189 (1985) 487-505. Zbl0549.35108MR786279
- [9] J. Ginibre and G. Velo, Regularity of solutions of critical and subcritical nonlinear wave equations, Nonlinear Anal.22 (1) (1994) 1-19. Zbl0831.35108MR1256167
- [10] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1995) 50-68. Zbl0849.35064MR1351643
- [11] L.V. Kapitanski, Weak and yet weaker solutions of semilinear wave equations, Comm. Partial Differential Equations19 (1994) 1629-1676. Zbl0831.35109MR1294474
- [12] L.V. Kapitanski, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett.1 (1994) 211-223. Zbl0841.35067MR1266760
- [13] H. Lindblad, Global solutions of nonlinear wave equations, Comm. Pure Appl. Math.XLV (1992) 1063-1096. Zbl0840.35065MR1177476
- [14] H. Lindblad, A sharp counterexample to the lacal existence of low-regularity solutions to nonlinear wave equations, Duke Math. J.72 (1993) 503-539. Zbl0797.35123MR1248683
- [15] H. Lindblad and C.D. Sogge, On existince and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal.130 (1995) 357-426. Zbl0846.35085MR1335386
- [16] M. Nakamura and T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces, Rev. Math. Phys.9 (3) (1997) 397- 410. Zbl0876.35080MR1446653
- [17] M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Preprint. Zbl0958.35011
- [18] H. Pecher, Lp-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichumgen, I, Math. Z.150 (1976) 159-183. Zbl0318.35054MR435604
- [19] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z.185 (1984) 261-270. Zbl0538.35063MR731347
- [20] H. Pecher, Local solutions of semilinear wave equations in Hs+1, Math. Methods Appl. Sci.19 (1996) 145-170. Zbl0845.35069MR1368792
- [21] R.S. Strichartz, Convolution with kernels having singularities on a sphere, Trans. AMS148 (1970) 461-471. Zbl0199.17502MR256219
- [22] R.S. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Anal.5 (1970) 218-235. Zbl0189.40701MR257581
- [23] R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44 (1977) 705-714. Zbl0372.35001MR512086
- [24] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. Zbl0546.46027
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.