Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 2, page 435-460
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topNakamura, Makoto, and Ozawa, Tohru. "Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.2 (2002): 435-460. <http://eudml.org/doc/84476>.
@article{Nakamura2002,
abstract = {Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space $\mathbb \{R\}^n$ with order $s<n/2$. The assumptions on the nonlinearities are described in terms of power behavior $p_1$ at zero and $p_2$ at infinity such as $1+4/n\le p_1\le p_2\le 1+4/(n-2s)$ for NLS and NLKG, and $1+4/(n-1)\le p_1\le p_2\le 1+4/(n-2s)$ for NLW.},
author = {Nakamura, Makoto, Ozawa, Tohru},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {435-460},
publisher = {Scuola normale superiore},
title = {Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations},
url = {http://eudml.org/doc/84476},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Nakamura, Makoto
AU - Ozawa, Tohru
TI - Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 2
SP - 435
EP - 460
AB - Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space $\mathbb {R}^n$ with order $s<n/2$. The assumptions on the nonlinearities are described in terms of power behavior $p_1$ at zero and $p_2$ at infinity such as $1+4/n\le p_1\le p_2\le 1+4/(n-2s)$ for NLS and NLKG, and $1+4/(n-1)\le p_1\le p_2\le 1+4/(n-2s)$ for NLW.
LA - eng
UR - http://eudml.org/doc/84476
ER -
References
top- [1] J. Bergh – J. Löfström, “Interpolation Spaces”, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin-New York, 1976. Zbl0344.46071
- [2] T. Cazenave, “An Introduction to Nonlinear Schrödinger Equations”, Textos de Métodos Matemáticos 22, Instituto de Matemática, Rio de Janeiro, 1989.
- [3] T. Cazenave – A. Haraux, Équation d’évolution avec non-linéarité logarithmique, Ann. Fac. Sci. Toulouse 2 (1980), 21-51. Zbl0411.35051MR583902
- [4] T. Cazenave – F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal. 14 (1990), 807-836. Zbl0706.35127MR1055532
- [5] J. Ginibre – G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), 50-68. Zbl0849.35064MR1351643
- [6] J. Ginibre – G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z. 189 (1985), 487-505. Zbl0549.35108MR786279
- [7] T. Kato, On nonlinear Schrödinger equations. II. -solutions and unconditional well-posedness, J. Anal. Math. 67 (1995), 281-306. Zbl0848.35124MR1383498
- [8] T. Kato, Nonlinear Schrödinger equations, In: “Schrödinger Operators”, H. Holden – A. Jensen (eds.), Lecture Notes in Phys. 345, Springer, Berlin, 1989, pp. 218-263. Zbl0698.35131MR1037322
- [9] M. Keel – T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980. Zbl0922.35028MR1646048
- [10] H. Lindblad – C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426. Zbl0846.35085MR1335386
- [11] S. Machihara – K. Nakanishi – T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, preprint. Zbl0991.35080MR1895710
- [12] M. Nakamura – T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci. 37 (2001), 255-293. Zbl1006.35068MR1855424
- [13] M. Nakamura – T. Ozawa, The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space, Ann. Inst. H. Poincaré, Physique théorique 71 (1999), 199-215. Zbl0960.35066MR1705131
- [14] M. Nakamura – T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces, Reviews in Math. Phys. 9 (1997), 397-410. Zbl0876.35080MR1446653
- [15] H. Pecher, Solutions of semilinear Schrödinger equations in , Ann. Inst. H. Poincaré Physique théorique 67 (1997), 259-296. Zbl0888.35101MR1472820
- [16] H. Pecher, Nonlinear small data scattering for the wave and Klein–Gordon equation, Math. Z. 185 (1984), 261-270. Zbl0538.35063MR731347
- [17] P. Ramond, “Field Theory”, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990. Zbl0984.81500MR1083767
- [18] W. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), 110-133. Zbl0466.47006MR614228
- [19] W. Strauss, Nonlinear scattering theory at low energy: sequel, J. Funct. Anal. 43 (1981), 281-293. Zbl0494.35068MR636702
- [20] H. Triebel, “Theory of Function Spaces”, Birkhäuser, Basel, 1983. Zbl0546.46027MR781540
- [21] M. Tsutsumi, Scattering of solutions of nonlinear Klein–Gordon equations in three space dimensions, J. Math. Soc. Japan 35 (1983), 521-538. Zbl0554.35095MR702775
- [22] B. Wang, Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in , Discrete Contin. Dynam. Systems 5 (1999), 753-763. Zbl0973.35132MR1722368
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.