Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations

Makoto Nakamura; Tohru Ozawa

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 2, page 435-460
  • ISSN: 0391-173X

Abstract

top
Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space n with order s < n / 2 . The assumptions on the nonlinearities are described in terms of power behavior p 1 at zero and p 2 at infinity such as 1 + 4 / n p 1 p 2 1 + 4 / ( n - 2 s ) for NLS and NLKG, and 1 + 4 / ( n - 1 ) p 1 p 2 1 + 4 / ( n - 2 s ) for NLW.

How to cite

top

Nakamura, Makoto, and Ozawa, Tohru. "Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.2 (2002): 435-460. <http://eudml.org/doc/84476>.

@article{Nakamura2002,
abstract = {Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space $\mathbb \{R\}^n$ with order $s&lt;n/2$. The assumptions on the nonlinearities are described in terms of power behavior $p_1$ at zero and $p_2$ at infinity such as $1+4/n\le p_1\le p_2\le 1+4/(n-2s)$ for NLS and NLKG, and $1+4/(n-1)\le p_1\le p_2\le 1+4/(n-2s)$ for NLW.},
author = {Nakamura, Makoto, Ozawa, Tohru},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {435-460},
publisher = {Scuola normale superiore},
title = {Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations},
url = {http://eudml.org/doc/84476},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Nakamura, Makoto
AU - Ozawa, Tohru
TI - Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 2
SP - 435
EP - 460
AB - Small data scattering for nonlinear Schrödinger equations (NLS), nonlinear wave equations (NLW), nonlinear Klein-Gordon equations (NLKG) with power type nonlinearities is studied in the scheme of Sobolev spaces on the whole space $\mathbb {R}^n$ with order $s&lt;n/2$. The assumptions on the nonlinearities are described in terms of power behavior $p_1$ at zero and $p_2$ at infinity such as $1+4/n\le p_1\le p_2\le 1+4/(n-2s)$ for NLS and NLKG, and $1+4/(n-1)\le p_1\le p_2\le 1+4/(n-2s)$ for NLW.
LA - eng
UR - http://eudml.org/doc/84476
ER -

References

top
  1. [1] J. Bergh – J. Löfström, “Interpolation Spaces”, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin-New York, 1976. Zbl0344.46071
  2. [2] T. Cazenave, “An Introduction to Nonlinear Schrödinger Equations”, Textos de Métodos Matemáticos 22, Instituto de Matemática, Rio de Janeiro, 1989. 
  3. [3] T. Cazenave – A. Haraux, Équation d’évolution avec non-linéarité logarithmique, Ann. Fac. Sci. Toulouse 2 (1980), 21-51. Zbl0411.35051MR583902
  4. [4] T. Cazenave – F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal. 14 (1990), 807-836. Zbl0706.35127MR1055532
  5. [5] J. Ginibre – G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), 50-68. Zbl0849.35064MR1351643
  6. [6] J. Ginibre – G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z. 189 (1985), 487-505. Zbl0549.35108MR786279
  7. [7] T. Kato, On nonlinear Schrödinger equations. II. H s -solutions and unconditional well-posedness, J. Anal. Math. 67 (1995), 281-306. Zbl0848.35124MR1383498
  8. [8] T. Kato, Nonlinear Schrödinger equations, In: “Schrödinger Operators”, H. Holden – A. Jensen (eds.), Lecture Notes in Phys. 345, Springer, Berlin, 1989, pp. 218-263. Zbl0698.35131MR1037322
  9. [9] M. Keel – T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980. Zbl0922.35028MR1646048
  10. [10] H. Lindblad – C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426. Zbl0846.35085MR1335386
  11. [11] S. Machihara – K. Nakanishi – T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, preprint. Zbl0991.35080MR1895710
  12. [12] M. Nakamura – T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci. 37 (2001), 255-293. Zbl1006.35068MR1855424
  13. [13] M. Nakamura – T. Ozawa, The Cauchy problem for nonlinear wave equations in the homogeneous Sobolev space, Ann. Inst. H. Poincaré, Physique théorique 71 (1999), 199-215. Zbl0960.35066MR1705131
  14. [14] M. Nakamura – T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces, Reviews in Math. Phys. 9 (1997), 397-410. Zbl0876.35080MR1446653
  15. [15] H. Pecher, Solutions of semilinear Schrödinger equations in H s , Ann. Inst. H. Poincaré Physique théorique 67 (1997), 259-296. Zbl0888.35101MR1472820
  16. [16] H. Pecher, Nonlinear small data scattering for the wave and Klein–Gordon equation, Math. Z. 185 (1984), 261-270. Zbl0538.35063MR731347
  17. [17] P. Ramond, “Field Theory”, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990. Zbl0984.81500MR1083767
  18. [18] W. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), 110-133. Zbl0466.47006MR614228
  19. [19] W. Strauss, Nonlinear scattering theory at low energy: sequel, J. Funct. Anal. 43 (1981), 281-293. Zbl0494.35068MR636702
  20. [20] H. Triebel, “Theory of Function Spaces”, Birkhäuser, Basel, 1983. Zbl0546.46027MR781540
  21. [21] M. Tsutsumi, Scattering of solutions of nonlinear Klein–Gordon equations in three space dimensions, J. Math. Soc. Japan 35 (1983), 521-538. Zbl0554.35095MR702775
  22. [22] B. Wang, Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in H s , Discrete Contin. Dynam. Systems 5 (1999), 753-763. Zbl0973.35132MR1722368

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.