Théorème de limite centrale fonctionnel pour une chaîne de Markov récurrente au sens de Harris et positive
Annales de l'I.H.P. Probabilités et statistiques (1978)
- Volume: 14, Issue: 4, page 425-440
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMaigret, Nelly. "Théorème de limite centrale fonctionnel pour une chaîne de Markov récurrente au sens de Harris et positive." Annales de l'I.H.P. Probabilités et statistiques 14.4 (1978): 425-440. <http://eudml.org/doc/77102>.
@article{Maigret1978,
author = {Maigret, Nelly},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {functional central limit theorem; positive recurrent Harris chain; martingale convergence theorems; Wiener process; Doeblin recurrent},
language = {fre},
number = {4},
pages = {425-440},
publisher = {Gauthier-Villars},
title = {Théorème de limite centrale fonctionnel pour une chaîne de Markov récurrente au sens de Harris et positive},
url = {http://eudml.org/doc/77102},
volume = {14},
year = {1978},
}
TY - JOUR
AU - Maigret, Nelly
TI - Théorème de limite centrale fonctionnel pour une chaîne de Markov récurrente au sens de Harris et positive
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1978
PB - Gauthier-Villars
VL - 14
IS - 4
SP - 425
EP - 440
LA - fre
KW - functional central limit theorem; positive recurrent Harris chain; martingale convergence theorems; Wiener process; Doeblin recurrent
UR - http://eudml.org/doc/77102
ER -
References
top- [1] Aleskeviscus, Some limit theorems for sums of random variables defined on a homogenous regular Markov chain (Russian). Litovsk. Math. Sb., t. 6, 1966, p. 297-311. MR220344
- [2] P. Billingsley, Convergence of probability measures. John Wiley, 1968. Zbl0172.21201MR233396
- [3] E. Bolthausen, On rates of convergence in a randon central limit theorem and in the central limit for Markov chains. Warscheinlichkeitstheorie verw-gebiete, t. 38, 1977, p. 279-286. Zbl0336.60060MR482943
- [4 a] R. Cogburn, The central limit theorem for Markov processes. Six Berkeley symposium in probabilities, 1972. Zbl0318.60017
- [4 b] Cogburn, A uniform theory for sums of Markov chain transition probabilities. Ann. Prob., vol. 3, n° 2, 1975, p. 191-214. Zbl0348.60106MR378103
- [5] L. Landers, Rogg, On the rate of convergence in the central limit theorem for Markov chains. Z. Wahrscheinlichkeitstheorie verw-gebiete, t. 35, 1976, p. 57-63. Zbl0315.60014MR407938
- [6] Mandl, Estimation and control in Markov chains. Advanced applied probabilities, t. 6, 1974, p. 40-60. Zbl0281.60070MR339876
- [7] Neveu, Potentiel markovien récurrent des chaînes de Harris. Ann. Inst. Fourier, t. 22 (2), p. 85-130. Zbl0226.60084MR380992
- [8] Numelin, a) A splitting technique for φ recurrent Markov chains ; b) On the Poisson equation for φ recurrent Markov chains (à paraître).
- [9] Orey, Limit theorems for Markov chains transition probabilities. Van Nostrand, 1971. Zbl0295.60054
- [10] G.H. Popescu, A functional central limit theorem for a class of Markov chains. Revue roumaine, math. pures et appliquées, t. 21, n° 6, 1976, p. 737-750. Bucarest. Zbl0343.60045MR415730
- [11] B.L.S. Prakasa Rao, a) On the rate of convergence of estimations for Markov processes. Wahrscheinlichkeitstheorie verw-gebiete, t. 26, 1973, p. 141-152 ; b) Remark on the rate of convergence in the random central limit theorem for mixing sequences. Wahrscheinlichkeitstheorie verw-gebiete, t. 31, 1975, p. 157-160. Springer Verlag. Zbl0306.60011MR339420
- [12] R. Rebolledo, a) Remarque sur la convergence en loi des martingales vers des martingales continues II. C. R. Acad. Sci. Paris (séance du 12 septembre 1977); b) La méthode des martingales appliquée à l'étude de la convergence en loi de processus. A paraître. MR461626
- [13] D. Revuz, Markov chains, North Holland, 1975. Zbl0332.60045MR415773
- [14] Saulis, Statuljavicus, An asymptotic expansion for the probabilities of large deviations of sums of random variables that are connected in a Markov chain. Litovsk. Math. Sb, t. 10, 1960, p. 359-366. MR273669
- [15] Statuljavicus, Limit theorems for sums of random variables that are connected in a Markov chain. I, II, III. Litovsk. Math. Sb, t. 9, 1969, p. 345-362 ; t. 9, 1969, p. 635-672 ; t. 10, 1970, p. 161-169. MR266281
- [16] Stone, Weak convergence of stochastic processes defined on semi infinite intervals. Proc. A. M. S., vol. 14, 1963. Zbl0116.35602
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.