Théorie géométrique de la Représentation Markovienne

Guy Ruckebusch

Annales de l'I.H.P. Probabilités et statistiques (1980)

  • Volume: 16, Issue: 3, page 225-297
  • ISSN: 0246-0203

How to cite

top

Ruckebusch, Guy. "Théorie géométrique de la Représentation Markovienne." Annales de l'I.H.P. Probabilités et statistiques 16.3 (1980): 225-297. <http://eudml.org/doc/77146>.

@article{Ruckebusch1980,
author = {Ruckebusch, Guy},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic realization; linear system theory; observability; controllability; Kalman filter; innovations process},
language = {fre},
number = {3},
pages = {225-297},
publisher = {Gauthier-Villars},
title = {Théorie géométrique de la Représentation Markovienne},
url = {http://eudml.org/doc/77146},
volume = {16},
year = {1980},
}

TY - JOUR
AU - Ruckebusch, Guy
TI - Théorie géométrique de la Représentation Markovienne
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1980
PB - Gauthier-Villars
VL - 16
IS - 3
SP - 225
EP - 297
LA - fre
KW - stochastic realization; linear system theory; observability; controllability; Kalman filter; innovations process
UR - http://eudml.org/doc/77146
ER -

References

top
  1. [Aka-1] H. Akaike, Stochastic theory of minimal realizations. I. E. E. E. Trans. Automatic Control, AC-19, 1974, p. 667-674. Zbl0292.93013MR426914
  2. [Aka-2] H. Akaike, Markovian representation of stochastic processes by canonical variables. S. I. A. M. J. Control., t. 13, 1975, p. 162-173. Zbl0312.60017MR449849
  3. [And] B.D.O. Anderson, The inverse problem of stationary covariance generationJ. Statistical Physics, t. 1, 1969, p. 133-147. MR253768
  4. [AnK] B.D.O. Anderson et T. Kailath, Forwards, backwards and dynamically reversible Markovian models of second order processes. Proc. 1978 I. E. E. E. International Symposium on Circuits and Systems, New York, p. 981-986. MR522111
  5. [AnV] B.D.O. Anderson et S. Vongpanitlerd, Network analysis and synthesis. A modern System Theory approach, Prentice-Hall, New Jersey, 1973. 
  6. [BaB] J.S. Baras et R.W. Brockett, H2-functions and infinite dimensional realization theory. S. I. A. M. J. Control, t. 13, 1975, p. 221-241. Zbl0297.93010MR456729
  7. [BaD] J.S. Baras et P. Dewilde, Invariant subspace methods in linear multivariable-distributed systems and lumped-distributed network synthesis. Proc. I. E. E. E., t. 64, 1976, p. 160-178. MR416679
  8. [BBF] J.S. Baras, R.W. Brockett et P.A. Fuhrmann, State-space model for infinite dimensional systems. I. E. E.E. Trans. Automatic Control, AC-19,1974, p.693-700. Zbl0291.93006MR434520
  9. [Ben] A. Bensoussan, Filtrage optimal des systèmes linéaires, Dunod, Paris, 1971. Zbl0231.93022
  10. [Bir] G. Birkhoff, Lattice theory. Amer. Math. Soc., Coll. Publ., vol. 25, Providence, Rhode Island, 1948. Zbl0033.10103MR29876
  11. [B1G] R.M. Blumenthal et R.K. Getoor, Markov processes and potential theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
  12. [BoJ] G.E.P. Box et G.M. Jenkins, Time series analysis: forecasting and control, Holden Day, San Francisco, 1976. Zbl0363.62069MR436499
  13. [Bro] R.W. Brockett, Finite dimensional linear systems, J. Wiley and Sons, New York, 1970. Zbl0216.27401
  14. [Cas] J.L. Casti, Dynamical systems and their applications: Linear theory. Mathematics in Science and Engineering, vol. 135, Academic Press, New York, 1977. Zbl0555.93002MR510991
  15. [Che] C.T. Chen, Introduction to linear system theory. H. R. W. Series in Electrical Engineering, Electronics and Systems, Holt, Rinehart and Winston, 1970. 
  16. [CuP] R.F. Curtain et A.J. Pritchard, Infinite dimensional linear systems theory. Lecture notes in Control and Information Science, vol. 8, Springer-Verlag, Berlin, 1978. Zbl0389.93001MR516812
  17. [Dav] M.C. Davis, Factoring the spectral matrix. I. E. E. E. Trans. Automatic Control, AC-8, 1963, p. 296-305. 
  18. [Doo-1] J.L. Doob, The elementary Gaussian processes. Annals of Math. Stat., t. 15, 1944, p. 229-282. Zbl0060.28907MR10931
  19. [Doo-2] J.L. Doob, Stochastic processes, J. Wiley and Sons, New York, 1953. Zbl0053.26802MR58896
  20. [DSS] R.G. Douglas, H.S. Shapiro et A.L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator. Ann. Inst. Fourier (Grenoble), t. 20, 1970, p. 37-76. Zbl0186.45302MR270196
  21. [Dun] T.E. Duncan, A geometric approach to linear control and estimation (à paraître). 
  22. [DuS] N. Dunford et J.T. Schwartz, Linear operators, vol. 1, Interscience, New York, 1957. Zbl0084.10402
  23. [DyM] H. Dym et H.P. McKean, Gaussian processes, function theory and the inverse spectral problem, Academic Press, New York, 1976. Zbl0327.60029MR448523
  24. [Fau-1] P. Faurre, Representation of stochastic processes, Ph. D. Dissertation, Stanford University, February 1967. 
  25. [Fau-2] P. Faurre, Réalisations Markoviennes de processus stationnaires. Rapport de recherche, n° 13, 1973, I. R. I. A., 78150 Le Chesnay. 
  26. [FCG] P. Faurre, M. Clerget et F. Germain, Opérateurs rationnels positifs. Application à l'hyperstabilité et aux processus aléatoires. Méthodes Mathématiques de l'informatique, t. 8, Dunod, Paris, 1979. Zbl0424.93002MR525380
  27. [Fuh-1] P.A. Fuhrmann, Realization theory in Hilbert space for a class of transfer functions. J. Funct. Anal., t. 18, 1975, p. 338-349. Zbl0304.93008MR367768
  28. [Fuh-2] P.A. Fuhrmann, Exact controllability and observability and realization theory in Hilbert space. J. of Math. Anal. and applications, t. 53, 1976, p. 377-392. Zbl0342.93009MR504097
  29. [Fuh-3] P.A. Fuhrmann, Linear operators and systems in Hilbert space (à paraître), McGraw-Hill. Zbl0456.47001
  30. [Ger] F. Germain, Algorithmes de calcul de réalisations Markoviennes. Cas singuliers et stabilité. Rapport de recherche, n° 66, 1973, I. R. I. A., 78150 Le Chesnay. 
  31. [Hal] P.R. Halmos, Shifts on Hilbert spaces. J. Reine Angew. Math., t. 208, 1961, p. 102-112. Zbl0107.09802MR152896
  32. [Han] E.J. Hannan, Multiple time series, Wiley and Sons, New York, 1970. Zbl0211.49804MR279952
  33. [Hel-1] H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964. Zbl0119.11303MR171178
  34. [Hel-2] J.W. Helton, Discrete time systems, operator models and scattering theory. J. Funct. Anal., t. 16, 1974, p. 15-38. Zbl0282.93033MR445310
  35. [Hel-3] J.W. Helton, Systems with infinite-dimensional state space : the Hilbert space approach. Proc. I. E. E. E., t. 64, 1976, p. 145-160. MR416694
  36. [Hof] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. Zbl0117.34001MR133008
  37. [IbR] I. Ibrahimov et Y.A. Rozanov, Processus aléatoires Gaussiens, Éditions de Moscou, 1974. Zbl0291.60021
  38. [Kai] T. Kailath, A view of three decades of linear filtering theory. I. E. E. E. Trans. Info. Theory, IT-20, vol. 2, 1974, p. 146-181. Zbl0307.93040MR465437
  39. [KaG] T. Kailath et R.A. Geesey, An innovations approach to least-squares estimation. Part IV: Recursive estimation given lumped covariance functions. I. E. E. E. Trans. Automatic Control, AC-16, 1971, p. 720-727. MR309259
  40. [KMS] T. Kailath, M. Morf et S. Sidhu, Some new algorithms for recursive estimation in constant discrete-time linear systems. Proc. seventh Princeton Symp. on Information and system science, 1973, p. 344-352. 
  41. [Kal-1] R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. Amer. Soc. Mech. Eng., J. Basic Engineering, t. 82, 1960, p. 35-45. 
  42. [Kal-2] R.E. Kalman, Linear stochastic filtering. Reappraisal and outlook. Proc. Symposium on System Theory, Polytechnic Institute of Brooklyn, 1965, p. 197-205. MR256769
  43. [Kal-3] R.E. Kalman, Lectures on controllability and observability. C. I. M. E. Summer course1968, Cremonese, Roma, 1969, p. 1-149. Zbl0208.17201MR280225
  44. [KFA] R.E. Kalman, P.L. Falb et M.A. Arbib, Topics in Mathematical System Theory, McGraw-Hill, New York, 1969. Zbl0231.49001MR255260
  45. [Kat] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966. Zbl0148.12601MR203473
  46. [Kol] A. Kolmogorov, Stationary sequences in Hilbert space (en russe). Bull. Math. Univ. Moscou, vol. 2, n° 6, 1941, p. 1-40. Zbl0063.03291MR9098
  47. [LaP] P.D. Lax et R.S. Phillips, Scattering theory, Academic Press, New York, 1967. Zbl0186.16301MR217440
  48. [Lin] A. Lindquist, A new algorithm for optimal filtering of discrete-time stationary processes. S. I. A. M. J. Control, t. 12, 1974, p. 736-746. Zbl0296.93037MR408968
  49. [LiP-1] A. Lindquist et G. Picci, On the stochastic realization problem. S. I. A. M. J. Control (à paraître). Zbl0428.60052
  50. [LiP-2] A. Lindquist et G. Picci, On the structure of minimal splitting subspaces in stochastic realization theory. Proc. 1977 Conf. Decision and Control,New Orleans, 1977, p. 42-48. MR504278
  51. [LiP-3] A. Lindquist et G. Picci, A state-space theory for stationary stochastic processes. Proc. 21st Midwest Symposium on Circuits and Systems, Ames, Iowa, August 1978. Zbl0496.93021
  52. [LiP-4] A. Lindquist et G. Picci, A Hardy space approach to the stochastic realization problem. Proc. 1978 Conf. Decision and Control, San Diego, January 1979. Zbl0428.60049MR528901
  53. [LiP-5] A. Lindquist et G. Picci,Realization theory for multivariate stationary Gaussian processes I: State space construction. 4th Int. Symposium on the Mathematical theory of Networks and Systems, Delft (Pays-Bas), 1979, p. 140-148. Zbl0496.93021
  54. [LPR] A. Lindquist, G. Picci et G. Ruckebusch, On minimal splitting subspaces and Markovian representations. Mathematical Systems Theory, t. 12, 1979, p. 271-279. Zbl0401.60056MR529562
  55. [LjK] L. Ljung et T. Kailath, Backwards Markovian models for second-order stochastic processes. I. E. E. E. Trans. Info. Theory, IT-22, 1976, p. 488-491. Zbl0334.93037MR424350
  56. [Man] V. Mandrekar, On multivariate wide-sense Markovprocesses. Nagoya Math. J., vol. 33, 1968, p. 7-19. Zbl0174.49602MR248909
  57. [Mas] P. Masani, On helixes in Hilbert space I. Theory of Proba. and its applications, vol. 17, 1972, p. 1-19. Zbl0283.60032MR298468
  58. [MaR] P. Masani et J. Robertson, The time-domain of continuous parameter weakly stationary stochastic processes. Pacific J. Math., t. 12, 1962, p. 1361-1378. Zbl0113.33403MR149562
  59. [MeL] R.K. Mehra et D.G. Lainiotis, Systems identification: advances and case studies, Academic Press, New York, 1977. 
  60. [MeP] M. Metivier et J. Pellaumail, Stochastic Integration, Academic Press, à paraître. Zbl0463.60004
  61. [Mey] P.A. Meyer, Processus de Markov, Springer-Verlag, Berlin, 1967. Zbl0189.51403MR219136
  62. [Nev-1] J. Neveu, Processus aléatoires Gaussiens, Presses de l'Université de Montréal, 1968. Zbl0192.54701MR272042
  63. [Nev-2] J. Neveu, Intégrales stochastiques et applications, Cours de 3e cycle, Université de Paris VI, 1971-1972. 
  64. [Pic] G. Picci, Stochastic realization of Gaussian processes. Proc. I. E. E. E., t. 64, 1976, p. 112-122. MR429288
  65. [Pot] V.P. Potapov, The multiplicative structure of J contractive matrix functions. Amer. Math. Soc. Transl., t. 15, 1960, p. 131-243. Zbl0090.05403MR114915
  66. [RiS] F. Riesz et B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris, 1965. Zbl0122.11205
  67. [Roz-1] Y.A. Rozanov, Stationary random processes, Holden Day, San Francisco, 1967. Zbl0152.16302MR214134
  68. [Roz-2] Y.A. Rozanov, On two selected topics connected with Stochastic System Theory. Applied Math. and Optimization, vol. 3, n° 1, 1976, p. 73-80. Zbl0355.93010MR444260
  69. [Roz-3] Y.A. Rozanov, On Markov extensions of a random process. Theory of Proba. and its applications, vol. 22, 1977, p. 190-195. Zbl0379.60038
  70. [Ruc-1] G. Ruckebusch, Représentations Markoviennes de processus Gaussiens stationnaires. Thèse de 3e cycle, Lab. de Calcul des Probabilités, Université de Paris VI, mai 1975. 
  71. [Ruc-2] G. Ruckebusch, Représentations Markoviennes de processus Gaussiens stationnaires. C. R. Acad. Sciences, Paris, Série A, t. 282, 1976, p. 649-651. Zbl0367.60038MR400372
  72. [Ruc-3] G. Ruckebusch, Représentations Markoviennes de processus Gaussiens stationnaires et applications statistiques. Journées de Statistique des processus stochastiques, Grenoble, 1977, Springer-Verlag, Berlin, Lecture Notes in Mathematics, t. 636, p. 115-139. Zbl0387.60043
  73. [Ruc-4] G. Ruckebusch, On the theory of Markovian Representation. Proc. Measure theory-applications to stochastic analysis, Oberwolfach (Allemagne), 1977, Springer-Verlag, Berlin, Lecture Notes in Mathematics, t. 695, p. 77-87. Zbl0409.93038MR527075
  74. [Ruc-5] G. Ruckebusch, A state space approach to the stochastic realization problem. Proc. 1978 I. E. E. E. International Symposium on Circuits and Systems, New York, p. 972-977. 
  75. [Ruc-6] G. Ruckebusch, Factorisations minimales de densités spectrales et représentations Markoviennes. Proc. 1er Colloque A. F. C. E. T.-S. M. F. de Mathématiques Appliquées, t. I, École Polytechnique, 91128Palaiseau, 1978, p. 365-375. Zbl0497.93033
  76. [Ruc-7] G. Ruckebusch, A geometric approach to the stochastic realization problem. Rapport interne, n° 41, Centre de Math. Appliquées, École Polytechnique, 91128Palaiseau, novembre 1978, soumis à publication. 
  77. [Ruc-8] G. Ruckebusch, Observability and constructibility in the theory of Markovian representation. 4th Int. Symposium on the Mathematical theory of Networks and Systems, Delft (Pays-Bas), 1979, p. 128-132. Zbl0499.93013
  78. [Ruc-9) G. Ruckebusch, Théorie géométrique de la Représentation Markovienne. Thèse d'État, Lab. de Calcul des Probabilités, Université de Paris VI, avril 1980. Zbl0441.60072
  79. [Sal] G. Salut, Identification optimale des systèmes linéaires stochastiques. Thèse d'État, Université Paul-Sabatier, Toulouse, 1976. 
  80. [SzF-1] B. Sz.-Nagy et C. Foias, Opérateurs sans multiplicité. Acta Sci. Math., t. 30, 1969, p. 1-18. Zbl0174.18301MR420316
  81. [SzF-2] B. Sz.-Nagy et C. Foias, Harmonic analysis of operators on Hilbert space, North Holland, Amsterdam, 1970. Zbl0201.45003MR275190
  82. [Tay] A.E. Taylor, Introduction to functional analysis, John Wiley and Sons, New York, 1958. Zbl0081.10202MR98966
  83. [Urb] K. Urbanik, Lectures on Prediction Theory, Springer-Verlag, New York, 1967. Zbl0262.60023MR224158
  84. [VaV] C. Van Putten et J.H. Van Schuppen, On stochastic dynamical systems. 4th Int. Symposium on the Mathematical Theory of Networks and Systems, Delft (Pays-Bas), 1979, p. 350-356. Zbl0504.93054
  85. [WiM] N. Wiener et P. Masani, The prediction theory of multivariate stochastic processes, Part I. Acta Math., t. 98, 1957, p. 111-150; Part II, Acta Math., t. 99, 1958, p. 93-137. Zbl0080.13002
  86. [Wil-1] J.C. Willems, Least squares stationary optimal control and the algebraic Riccati equation. I. E. E. E. Trans. Automatic Control, AC-16, 1971, p. 621-634. MR308890
  87. [Wil-2] J.C. Willems, Dissipative dynamical systems, Part II: Linear systems with quadratic supply rates. Archive for rational Mechanics and Analysis, t. 45, 1972, p. 352-393. Zbl0252.93003MR527463
  88. [WiV] J.C. Willems et J.H. Van Schuppen, Stochastic systems and the problem of state space realization (à paraître). Zbl0477.93052
  89. [Wol] H. Wold, A study in the analysis of stationary time series, Almquist and Wiksell, Stockholm, 1938. Zbl0019.35602MR61344JFM64.1200.02
  90. [Won] W.M. Wonham, Linear multivariable control. A geometric approach, Springer-Verlag, Berlin, Lecture Notes in Economics and Mathematical Systems, t. 101, 1974. Zbl0314.93007MR378912
  91. [Yos] K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1974. Zbl0286.46002MR350358

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.