Two scales hydrodynamic limit for a model of malignant tumor cells

Anna de Masi; Stephan Luckhaus; Errico Presutti

Annales de l'I.H.P. Probabilités et statistiques (2007)

  • Volume: 43, Issue: 3, page 257-297
  • ISSN: 0246-0203

How to cite

top

de Masi, Anna, Luckhaus, Stephan, and Presutti, Errico. "Two scales hydrodynamic limit for a model of malignant tumor cells." Annales de l'I.H.P. Probabilités et statistiques 43.3 (2007): 257-297. <http://eudml.org/doc/77934>.

@article{deMasi2007,
author = {de Masi, Anna, Luckhaus, Stephan, Presutti, Errico},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {interacting particle systems; hydrodynamical limit},
language = {eng},
number = {3},
pages = {257-297},
publisher = {Elsevier},
title = {Two scales hydrodynamic limit for a model of malignant tumor cells},
url = {http://eudml.org/doc/77934},
volume = {43},
year = {2007},
}

TY - JOUR
AU - de Masi, Anna
AU - Luckhaus, Stephan
AU - Presutti, Errico
TI - Two scales hydrodynamic limit for a model of malignant tumor cells
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2007
PB - Elsevier
VL - 43
IS - 3
SP - 257
EP - 297
LA - eng
KW - interacting particle systems; hydrodynamical limit
UR - http://eudml.org/doc/77934
ER -

References

top
  1. [1] C. Boldrighini, A. De Masi, A. Pellegrinotti, Non equilibrium fluctuations in particle systems modelling reaction–diffusion equations, Stochastic Process. Appl.42 (1992) 1-30. Zbl0758.60107
  2. [2] C. Boldrighini, A. De Masi, A. Pellegrinotti, E. Presutti, Collective phenomena in interacting particle systems, Stochastic Process. Appl.25 (1987) 137-152. Zbl0626.60103MR904269
  3. [3] T. Brox, H. Rost, Equilibrium fluctuations of stochastic particle systems: the role of conserved quantities, Ann. Probab.12 (1984) 742-759. Zbl0546.60098MR744231
  4. [4] A. De Masi, E. Presutti, Mathematical Methods for Hydrodynamical Limits, Lecture Notes in Mathematics, vol. 1501, Springer-Verlag, 1991. Zbl0754.60122MR1175626
  5. [5] A. De Masi, E. Presutti, E. Scacciatelli, The weakly asymmetric simple exclusion process, Ann. Inst. H. Poincaré A25 (1989) 1-38. Zbl0664.60110MR995290
  6. [6] P. Ferrari, E. Presutti, E. Scacciatelli, M.E. Vares, The symmetric simple exclusion process. I. Probability estimates, Stochastic Process. Appl. (1991) 89-105. Zbl0749.60094MR1135087
  7. [7] P. Ferrari, E. Presutti, E. Scacciatelli, M.E. Vares, The symmetric simple exclusion process. II. Applications, Stochastic Process. Appl. (1991) 107-115. Zbl0749.60095MR1135088
  8. [8] M.Z. Guo, G.C. Papanicolaou, S.R.S. Varadhan, Non linear diffusion limit for a system with nearest neighbor interactions, Comm. Math. Phys.118 (1988) 31-59. Zbl0652.60107MR954674
  9. [9] C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems, Springer, 1999. Zbl0927.60002MR1707314
  10. [10] S. Luckhaus, L. Triolo, The continuum reaction–diffusion limit of a stochastic cellular growth model, Rend. Acc. Lincei (S.9)15 (2004) 215-223. Zbl1162.60346
  11. [11] M. Mourragui, Comportement hydrodynamique et entropie relative des processus de sauts, de naissances et de morts, Ann. Inst. H. Poincaré Probab. Statist.32 (1996) 361-385. Zbl0851.60094MR1387395
  12. [12] A. Perrut, Hydrodynamic limits for a two-species reaction–diffusion process, Ann. Appl. Probab.10 (2000) 163-191. Zbl1171.60394

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.