Sur la propriété de la limite centrale dans 𝒟 [ 0 , 1 ]

Paul Hubert Bézandry; Xavier Fernique

Annales de l'I.H.P. Probabilités et statistiques (1992)

  • Volume: 28, Issue: 1, page 31-46
  • ISSN: 0246-0203

How to cite

top

Bézandry, Paul Hubert, and Fernique, Xavier. "Sur la propriété de la limite centrale dans ${\mathcal {D}} [ 0, 1 ]$." Annales de l'I.H.P. Probabilités et statistiques 28.1 (1992): 31-46. <http://eudml.org/doc/77423>.

@article{Bézandry1992,
author = {Bézandry, Paul Hubert, Fernique, Xavier},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {cadlag processes; complete metric space; central limit theorem},
language = {fre},
number = {1},
pages = {31-46},
publisher = {Gauthier-Villars},
title = {Sur la propriété de la limite centrale dans $\{\mathcal \{D\}\} [ 0, 1 ]$},
url = {http://eudml.org/doc/77423},
volume = {28},
year = {1992},
}

TY - JOUR
AU - Bézandry, Paul Hubert
AU - Fernique, Xavier
TI - Sur la propriété de la limite centrale dans ${\mathcal {D}} [ 0, 1 ]$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1992
PB - Gauthier-Villars
VL - 28
IS - 1
SP - 31
EP - 46
LA - fre
KW - cadlag processes; complete metric space; central limit theorem
UR - http://eudml.org/doc/77423
ER -

References

top
  1. [1] P.H. Bézandry et X. Fernique, Analyse de fonctions aléatoires peu régulières sur [0,1], C. R. Acad. Sci.Paris, t. 310, série I, 1990, p. 745-750. Zbl0707.60036MR1055241
  2. [2] P. Billingsley, Convergence of Probability Measures, J. Wiley, New York, 1968. Zbl0172.21201MR233396
  3. [3] N.N. Censov, Weak Convergence of Stochastic Processes whose Trajectories Have no Discontinuities of the Secund Order, Theory Prob. Appl., vol. 1-3, 1956, p. 140-149. 
  4. [4] X. Fernique, Régularité de fonctions aléatoires non gaussiennes, Springer Lect. Notes Math., n° 976, p. 1-74. Zbl0507.60027MR722982
  5. [5] I.I. Gihman et A.V. Skorohod, The Theory of Stochastic Processes, I, Berlin-Heidelberg-New York, Springer, 1974. Zbl0291.60019MR346882
  6. [6] E. Giné et J. Zinn, Lectures on the Central Limit Theorem for Empirical Processes, Lect. Notes Math., vol. 1221, p. 50-113, Berlin, Heidelberg, New York, Springer, 1986. Zbl0605.60026MR875007
  7. [7] M.G. Hahn, Central Limit Theorems in D ([0, 1]), Z. Wahr verw. Gebiete, vol. 44, 1978, p. 89-101. Zbl0378.60002MR501231
  8. [8] D. Jukneviciene, Central Limit Theorem in the Space D[0,1], Lithuanian Math. J., vol. 25, 1985, p. 293-298. Zbl0593.60032MR823656
  9. [9] M.B. Marcus et G. Pisier, Characterisation of Alsmost Surely Continuous p-Stable Random Fourier Series and Strongly Stationary Processes, Acta Math., vol. 152, 1984, p. 245-301. Zbl0547.60047MR741056
  10. [10] V. Paulauskas et Ch. Stieve, On the Central Limit Theorem in D ([0, 1]) and D([0,1); H), Lietuvos Matematikos Rinkings, vol. 30, 1990, p. 267-276. Zbl0722.60023MR1082482
  11. [11] G. Pisier, Conditions d'entropie assurant la continuité de certains processus et applications à l'analyse harmonique, Sém. d'Anal. Fonct., 1979–1980, exposés 13-14, Paris, École Polytechnique. Zbl0441.60040MR604395
  12. [12] R. Ranga Rao, The Law of Large Numbers for D([0, 1])-Valued Random Variables, Theory Prob. Appl., vol. 8, 1963, p. 70-74. Zbl0122.13303
  13. [13] A.V. Skorohod, Limit Theorem for Stochastic Processes, Theory Prob. Appl., vol. 1- 3, 1956, p. 261-290. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.