Conditions d'entropie assurant la continuité de certains processus et applications à l'analyse harmonique

G. Pisier

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980)

  • page 1-43

How to cite


Pisier, G.. "Conditions d'entropie assurant la continuité de certains processus et applications à l'analyse harmonique." Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980): 1-43. <>.

author = {Pisier, G.},
journal = {Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
keywords = {central limit theorem; law of iterated logarithm; sample continuity; metric entropy; p-summing operator; absolutely convergent Fourier series; approximation numbers},
language = {fre},
pages = {1-43},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Conditions d'entropie assurant la continuité de certains processus et applications à l'analyse harmonique},
url = {},
year = {1979-1980},

AU - Pisier, G.
TI - Conditions d'entropie assurant la continuité de certains processus et applications à l'analyse harmonique
JO - Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
PY - 1979-1980
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 43
LA - fre
KW - central limit theorem; law of iterated logarithm; sample continuity; metric entropy; p-summing operator; absolutely convergent Fourier series; approximation numbers
UR -
ER -


  1. [1] P. Assouad: Factorisation des applications Λp-sommantes, Séminaire Maurey-Schwartz 1973-74, exposé No 11. 
  2. [2] P. Boulicaut: Fonctions de Young et continuité des trajectoires d'une fonction aléatoire, Annales de l'Institut Fourier, 24, 2 (1974), 27-47. Zbl0275.60051MR458563
  3. [3] B. Carl: Entropy numbers, s-numbers and eigenvalue problems, à paraître. Zbl0466.41008
  4. [4] B. Carl et H. Triebel: Inequalities between eigenvalues, entropy numbers and related quantities of compact operators in Banach spaces, à paraître. Zbl0465.47019
  5. [5] K.M. Chong et N.M. Rice: Equimeasurable rearrangements of functions, Queens Papers in Pure and Applied Maths. No 28, Queens Univetsity1971. Zbl0275.46024MR372140
  6. [6] P. De Land: Moduli of continuity for exponential Lipschitz classes, TAMS229 (1977) 175-189. Zbl0349.26004MR442157
  7. [7] J. Delporte: Fonctions aléatoires presque sûrement continues sur un intervalle fermé, Ann. Inst. H. Poincaré Sér.B1 (1964), 111-215. Zbl0138.10701MR183011
  8. [8] R.M. Dudley: Sample functions of the Gaussian process, Annals of Probability1 (1973) 66-103. Zbl0261.60033MR346884
  9. [9] R.M. Dudley: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional. Analysis1 (1967) 290-330. Zbl0188.20502MR220340
  10. [10] N. Dunford, J. Schwartz: Linear operators, Part II, Wiley Interscience1963. Zbl0128.34803MR1009163
  11. [11] X. Fernique: Régularité des trajectoires des fonctions aléatoires gaussiennes, Ecole d'Eté de Saint Flour (1974), Springer Lecture Notes in Maths. No 480. Zbl0331.60025MR413238
  12. [12] X. Fernique: Continuité des processus gaussiens, C. R. Acad. Sc. Paris, A258 (1964) 6058-6060. Zbl0129.30101MR164365
  13. [13] A. Garsia: A remarkable inequality and the uniform convergence of Fourier series, Indiana Univ. Math. Journal25 (1976) 85-102. Zbl0324.42005MR413247
  14. [14] A.M. Garsia et E. Rodemich: Monotonicity of certain functionals under rearrangement, Annales de l'Institut Fourier24, 2 (1974), 67-116. Zbl0274.26006MR414802
  15. [15] A. Garsia, E. Rodemich et H. RumseyJr.: A real variable lemma and the continuity of paths of Gaussian processes, Indiana Univ. Math. Journal20 (1970) 565-578. Zbl0252.60020MR267632
  16. [16] A. Garsia: Combinatorial inequalities and smoothness of functions, Bull. A.M.S.82 (1976) 157-170. Zbl0351.26005MR582776
  17. [17] M.G. Hahn: Central limit theorems for D([0,1])-valued random variables, Ph. D Thesis, M.I.T.Cambridge1975. 
  18. [18] M.G. Hahn: Conditions for sample continuity and the central limit theorem, Annals of Probability5 (1977) 351-360. Zbl0388.60043MR440679
  19. [19] M.G. Hahn:: A note on the central limit theorem of square integrable processes, Proc. A.M.S.64 (1977) 331-334. Zbl0334.60013MR448487
  20. [20] M.G. Hahn et M.J. Klass: Sample continuity of square integrable prucesses, Annals of Probability5 (1977) 361-370. Zbl0388.60044MR440680
  21. [21] C.S. Herz: Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transform, J. Math. Mech.18 (1968) 283-324. Zbl0177.15701MR438109
  22. [22] J. Hoffmann-Jørgensen et G. Pisier: The law of large numbers and the central limit theorem in Banach spaces, Annals of Probability4 (1976) 587-599. Zbl0368.60022MR423451
  23. [23] I. Ibragimov: Properties of sample functions for stochastic processes and embedding theorems, Theory of Probability and its Appl, 18 (1973) 442-453. Zbl0324.60033
  24. [24] I. Ibragimov: Sur la régularité des trajectoires des fonctions aléatoires, C. R. Acad. Sc. ParisA289 (1979) 545-547. Zbl0416.60043MR557270
  25. [25] N. Jain et M.B. Marcus: Sufficient conditions for the continuity of stationary Gaussian processes and applications to random series series of functions, Annales Inst. Fourier24, 2 (1974) 117-141. Zbl0283.60041MR413239
  26. [26] J.P. Kahane: Séries de Fourier absolument convergentes, Springer Verlag (1970), Ergebnisse Band 50. Zbl0195.07602MR275043
  27. [27] N. Kôno: Best possibility of an integral test for sample continuity of L P-processes (p ≽ 2), Proc. Japan Acad.54 ser. A (1978) 197-201. Zbl0407.60039
  28. [28] M. Loeve: Probability theory, Van Nostrand, 3ème édition, 1963. Zbl0108.14202MR203748
  29. [29] G.G. Lorentz: Approximation of functions, Holt, Rinehart and Winston, New-York1966. Zbl0153.38901MR213785
  30. [30] G.G. Lorentz: Metric entropy and approximation, Bull. A.M.S.72 (1966) 903-937. Zbl0158.13603MR203320
  31. [31] M.B. Marcus et G. Pisier: Random Fourier series with applications to harmonie analysis, preprint. 
  32. [32] M.B. Marcus et L.A. Shepp: Sample behavior of Gaussian processes, Sixth Berkeley Symposium (1970) p. 423-441. Zbl0379.60040MR402896
  33. [33] M.B. Marcus et L.A. Shepp: Continuity of Gaussian processes, Trans. A.M.S.151 (1970) 377-391. Zbl0209.49201MR264749
  34. [34] C. Nanopoulos et P. Nohelis: Etude de la régularité et des propriétés limites des fonctions aléatoires définies sur [0,1]n, de type puissance. C. R. Acad. Sc. ParisA285 (1977) 273-276. Zbl0366.60057MR461647
  35. [35] C. Nanopoulos et P. Nobelis: Etude de la régularité des fonctions aléatoires et de leurs propriétés limites, Thèse de 3ème cycle (1977) Université de Strasbourg. Zbl0366.60057
  36. [36] T.W. Park: Sobolev type inequalities and path continuity of L p processes with multidimensional time parameter, Ph. D. Thesis. 
  37. [37] A. Pietsch: Operator ideals, Berlin, 1978. Zbl0399.47039MR519680
  38. [38] A. Pietsch: Weyl numbers and eigenvalues of operators in Banach spaces, Math. Annalen (1980). Zbl0428.47027MR568205
  39. [39] C. Preston: Banach spaces arising from some integral inequalities, Indiana UniversityMath. Journal20 (1971) 997-1015. Zbl0228.46024MR282209
  40. [40] C. Preston: Continuity properties of some Gaussian processes, Annals of Math. Stat.43 (1972) 285-292. Zbl0268.60044MR307316
  41. [41] Séminaire L. Schwartz sur les applications radonifiantes 1969-70, Ecole Polytechnique, Paris. Zbl0195.13003
  42. [42] Séminaire Maurey-Schwartz 1973-74, Ecole Polytechnique, Paris. 
  43. [43] J.H. Wells et L.R. Williams: Embeddings and extensions in analysis, Springer Verlag (1975), Ergebnisse Band 84. Zbl0324.46034MR461107

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.