An invariance principle for Markov processes and brownian particles with singular interaction
Hirofumi Osada (1998)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Hirofumi Osada (1998)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Mihai Gradinaru, Ivan Nourdin (2009)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Weighted power variations of fractional brownian motion are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by . The limit of the error between the exact solution and the considered scheme is computed explicitly.
Hahn, Marjorie, Umarov, Sabir (2011)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf Gorenflo There is a well-known relationship between the Itô stochastic differential equations (SDEs) and the associated partial differential equations called Fokker-Planck equations, also called Kolmogorov equations. The Brownian motion plays the role of the basic driving process for SDEs. This paper provides fractional generalizations of the triple relationship between the driving...
Steven N. Evans (1987)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Mihai Gradinaru, Ivan Nourdin, Francesco Russo, Pierre Vallois (2005)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Edwin Perkins (1989)
Annales de l'I.H.P. Probabilités et statistiques
Similarity: