Transition density estimates for brownian motion on scale irregular Sierpinski gaskets

M. T. Barlow; B. M. Hambly

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 5, page 531-557
  • ISSN: 0246-0203

How to cite

top

Barlow, M. T., and Hambly, B. M.. "Transition density estimates for brownian motion on scale irregular Sierpinski gaskets." Annales de l'I.H.P. Probabilités et statistiques 33.5 (1997): 531-557. <http://eudml.org/doc/77581>.

@article{Barlow1997,
author = {Barlow, M. T., Hambly, B. M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Brownian motion; fractals; Sierpinski triangle; transition density; Dirichlet forms},
language = {eng},
number = {5},
pages = {531-557},
publisher = {Gauthier-Villars},
title = {Transition density estimates for brownian motion on scale irregular Sierpinski gaskets},
url = {http://eudml.org/doc/77581},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Barlow, M. T.
AU - Hambly, B. M.
TI - Transition density estimates for brownian motion on scale irregular Sierpinski gaskets
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 5
SP - 531
EP - 557
LA - eng
KW - Brownian motion; fractals; Sierpinski triangle; transition density; Dirichlet forms
UR - http://eudml.org/doc/77581
ER -

References

top
  1. [1] M.T. Barlow, Random walks, electrical resistance, and nested fractals, In: K. D. Elworthy, N. Ikeda (eds.) Asymptotic problems in probability theory: stochastic models and diffusion on fractals, Montreal, Pitman, 1993, pp. 131-157. Zbl0791.60097MR1354153
  2. [2] M.T. Barlow and R.F. Bass, Construction of Brownian motion on the Sierpinski carpet, Ann. Inst. H. Poincaré, Vol. 25, 1989, pp. 225-257. Zbl0691.60070MR1023950
  3. [3] M.T. Barlow and R.F. Bass, Transition densities for Brownian motion on the Sierpinski carpet, Prob. Theory Rel. Fields, Vol. 91, 1992, pp. 307-330. Zbl0739.60071MR1151799
  4. [4] M.T. Barlow and E.A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Rel. Fields, Vol. 79, 1988, pp. 543-624. Zbl0635.60090MR966175
  5. [5] A. Beurling and J. Deny, Espaces de Dirichlet I, le cas élémentaire, Acta. Math., Vol. 99, 1958, pp. 203-224. Zbl0089.08106MR98924
  6. [6] K.J. Falconer, Fractal Geometry, Wiley, Chichester, 1990. Zbl0689.28003MR1102677
  7. [7] P.J. Fitzsimmons, B.M. Hambly and T. Kumagai, Transition density estimates for Brownain motion on affine nested fractals, Comm. Math. Phys., Vol. 165, 1994, pp. 595-620. Zbl0853.60062MR1301625
  8. [8] M. Fukushima, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, In: Albeverio, Fenstad, Holden and Lindstrøm (eds.) Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, In Memory of R. Høegh-Krohn, vol. 1, Cambridge Univ. Press, 1992, pp. 151-161. Zbl0764.60081MR1190496
  9. [9] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
  10. [10] B.M. Hambly, Brownian motion on a homogeneous random fractal, Probab. Theory Rel. Fields, Vol. 94, 1992, pp. 1-38. Zbl0767.60075MR1189083
  11. [11] B.M. Hambly, Brownian motion on a random recursive Sierpinski gasket, to appear Ann. Probab., 1997. Zbl0895.60081MR1457612
  12. [12] S. Hutchinson, Self-similar sets, Indiana Univ. Math. J., Vol. 30, 1981, pp. 713-747. Zbl0598.28011
  13. [13] J. Kigami, A harmonic calculus for p.c.f. self-similar sets, Trans. Am. Math. Soc., Vol. 335, 1993, pp. 721-755. Zbl0773.31009MR1076617
  14. [14] J. Kigami, Harmonic calculus on limits of networks and its applications to dendrites, J. Funct. Anal., Vol. 128, 1995, pp. 48-86. Zbl0820.60060MR1317710
  15. [15] T. Kumagai, Estimates of transition densities for Brownian motion on nested fractals, Proba. Theory Rel. Fields, Vol. 96, 1993, pp. 205-224. Zbl0792.60073MR1227032
  16. [16] S. Kusuoka, Diffusion processes on nested fractals, In: Dobrushin, R. L., Kusuoka, S.: Statistical mechanics and fractals (Lect. Notes in Math.1569), Springer-Verlag, 1993. Zbl0787.60119
  17. [17] S. Kusuoka and X.Y. Zhou, Dirichlet forms on fractals: Poincaré constant and resistance, Probab. Theory Relat. Fields, Vol. 93, 1992, pp. 169-196. Zbl0767.60076MR1176724
  18. [18] T. Lindstrøm, Brownian motion on nested fractals, Memoirs Am. Math. Soc., Vol. 420, 1990. Zbl0688.60065MR988082
  19. [19] R.D. Mauldin and S.C. Williams, Random recursive constructions: asymptotic geometric and topological properties, Trans. Am. Math. Soc., Vol. 295, 1990, pp. 325-346. Zbl0625.54047MR831202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.