Transition density estimates for brownian motion on scale irregular Sierpinski gaskets
Annales de l'I.H.P. Probabilités et statistiques (1997)
- Volume: 33, Issue: 5, page 531-557
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBarlow, M. T., and Hambly, B. M.. "Transition density estimates for brownian motion on scale irregular Sierpinski gaskets." Annales de l'I.H.P. Probabilités et statistiques 33.5 (1997): 531-557. <http://eudml.org/doc/77581>.
@article{Barlow1997,
author = {Barlow, M. T., Hambly, B. M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Brownian motion; fractals; Sierpinski triangle; transition density; Dirichlet forms},
language = {eng},
number = {5},
pages = {531-557},
publisher = {Gauthier-Villars},
title = {Transition density estimates for brownian motion on scale irregular Sierpinski gaskets},
url = {http://eudml.org/doc/77581},
volume = {33},
year = {1997},
}
TY - JOUR
AU - Barlow, M. T.
AU - Hambly, B. M.
TI - Transition density estimates for brownian motion on scale irregular Sierpinski gaskets
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 5
SP - 531
EP - 557
LA - eng
KW - Brownian motion; fractals; Sierpinski triangle; transition density; Dirichlet forms
UR - http://eudml.org/doc/77581
ER -
References
top- [1] M.T. Barlow, Random walks, electrical resistance, and nested fractals, In: K. D. Elworthy, N. Ikeda (eds.) Asymptotic problems in probability theory: stochastic models and diffusion on fractals, Montreal, Pitman, 1993, pp. 131-157. Zbl0791.60097MR1354153
- [2] M.T. Barlow and R.F. Bass, Construction of Brownian motion on the Sierpinski carpet, Ann. Inst. H. Poincaré, Vol. 25, 1989, pp. 225-257. Zbl0691.60070MR1023950
- [3] M.T. Barlow and R.F. Bass, Transition densities for Brownian motion on the Sierpinski carpet, Prob. Theory Rel. Fields, Vol. 91, 1992, pp. 307-330. Zbl0739.60071MR1151799
- [4] M.T. Barlow and E.A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Rel. Fields, Vol. 79, 1988, pp. 543-624. Zbl0635.60090MR966175
- [5] A. Beurling and J. Deny, Espaces de Dirichlet I, le cas élémentaire, Acta. Math., Vol. 99, 1958, pp. 203-224. Zbl0089.08106MR98924
- [6] K.J. Falconer, Fractal Geometry, Wiley, Chichester, 1990. Zbl0689.28003MR1102677
- [7] P.J. Fitzsimmons, B.M. Hambly and T. Kumagai, Transition density estimates for Brownain motion on affine nested fractals, Comm. Math. Phys., Vol. 165, 1994, pp. 595-620. Zbl0853.60062MR1301625
- [8] M. Fukushima, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, In: Albeverio, Fenstad, Holden and Lindstrøm (eds.) Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, In Memory of R. Høegh-Krohn, vol. 1, Cambridge Univ. Press, 1992, pp. 151-161. Zbl0764.60081MR1190496
- [9] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
- [10] B.M. Hambly, Brownian motion on a homogeneous random fractal, Probab. Theory Rel. Fields, Vol. 94, 1992, pp. 1-38. Zbl0767.60075MR1189083
- [11] B.M. Hambly, Brownian motion on a random recursive Sierpinski gasket, to appear Ann. Probab., 1997. Zbl0895.60081MR1457612
- [12] S. Hutchinson, Self-similar sets, Indiana Univ. Math. J., Vol. 30, 1981, pp. 713-747. Zbl0598.28011
- [13] J. Kigami, A harmonic calculus for p.c.f. self-similar sets, Trans. Am. Math. Soc., Vol. 335, 1993, pp. 721-755. Zbl0773.31009MR1076617
- [14] J. Kigami, Harmonic calculus on limits of networks and its applications to dendrites, J. Funct. Anal., Vol. 128, 1995, pp. 48-86. Zbl0820.60060MR1317710
- [15] T. Kumagai, Estimates of transition densities for Brownian motion on nested fractals, Proba. Theory Rel. Fields, Vol. 96, 1993, pp. 205-224. Zbl0792.60073MR1227032
- [16] S. Kusuoka, Diffusion processes on nested fractals, In: Dobrushin, R. L., Kusuoka, S.: Statistical mechanics and fractals (Lect. Notes in Math.1569), Springer-Verlag, 1993. Zbl0787.60119
- [17] S. Kusuoka and X.Y. Zhou, Dirichlet forms on fractals: Poincaré constant and resistance, Probab. Theory Relat. Fields, Vol. 93, 1992, pp. 169-196. Zbl0767.60076MR1176724
- [18] T. Lindstrøm, Brownian motion on nested fractals, Memoirs Am. Math. Soc., Vol. 420, 1990. Zbl0688.60065MR988082
- [19] R.D. Mauldin and S.C. Williams, Random recursive constructions: asymptotic geometric and topological properties, Trans. Am. Math. Soc., Vol. 295, 1990, pp. 325-346. Zbl0625.54047MR831202
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.