Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps

Marc Arnaudon; Xue-Mei Li; Anton Thalmaier

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 6, page 765-791
  • ISSN: 0246-0203

How to cite

top

Arnaudon, Marc, Li, Xue-Mei, and Thalmaier, Anton. "Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps." Annales de l'I.H.P. Probabilités et statistiques 35.6 (1999): 765-791. <http://eudml.org/doc/77645>.

@article{Arnaudon1999,
author = {Arnaudon, Marc, Li, Xue-Mei, Thalmaier, Anton},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic calculus on manifolds; -convex geometry; martingales with prescribed terminal value; finely harmonic maps},
language = {eng},
number = {6},
pages = {765-791},
publisher = {Gauthier-Villars},
title = {Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps},
url = {http://eudml.org/doc/77645},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Arnaudon, Marc
AU - Li, Xue-Mei
AU - Thalmaier, Anton
TI - Manifold-valued martingales, changes of probabilities, and smoothness of finely harmonic maps
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 6
SP - 765
EP - 791
LA - eng
KW - stochastic calculus on manifolds; -convex geometry; martingales with prescribed terminal value; finely harmonic maps
UR - http://eudml.org/doc/77645
ER -

References

top
  1. [1] M. Arnaudon, Differentiable and analytic families of continuous martingales in manifolds with connection, Probab. Theory Related Fields108 (1997) 219-257. Zbl0883.60043MR1452557
  2. [2] M. Arnaudon and A. Thalmaier, Complete lifts of connections and stochastic Jacobi fields, J. Math. Pures Appl.77 (1998) 283-315. Zbl0916.58045MR1618537
  3. [3] R.W.R. Darling, Martingales on noncompact manifolds: maximal inequalities and prescribed limits, Annales de l'Institut Henri Poincaré32 (4) (1996) 431-454. Zbl0861.58050MR1411268
  4. [4] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc.20 (1988) 385-524. Zbl0669.58009MR956352
  5. [5] K.D. Elworthy, Harmonic maps and the non-linear heat equation, Unpublished notes, Warwick, 1993. 
  6. [6] K.D. Elworthy and X.-M. Li, A class of integration by parts formulae in stochastic analysis I, in: S. Watanabe, Ed., Itô's stochastic Calculus and Probability Theory (dedicated to K. Itô on the occasion of his eightieth birthday), Springer, 1996, 15-30. Zbl0881.60052MR1439515
  7. [7] M. Émery, Stochastic Calculus in Manifolds, Springer, 1989. Zbl0697.60060MR1030543
  8. [8] W. Kendall, Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence, Proc. London Math. Soc. (3) 61 (1990) 371-406. Zbl0675.58042MR1063050
  9. [9] W. Kendall, Probability, convexity, and harmonic maps II: Smoothness via probabilistic gradient inequalities, J. Funct. Anal.126 (1994) 228-257. Zbl0808.60058MR1305069
  10. [10] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990. Zbl0743.60052MR1070361
  11. [11] J. Picard, Martingales on Riemannian manifolds with prescribed limits, J. Funct. Anal.99 (1991) 223-261. Zbl0758.60051MR1121614
  12. [12] J. Picard, Barycentres et martingales sur une variété, Annales de l'Institut Henri Poincaré30 (1994) 647-702. Zbl0817.58047MR1302764
  13. [13] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 2nd ed., Springer, 1994. Zbl0804.60001MR1303781
  14. [14] A. Thalmaier and F.-Y. Wang, Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal.155 (1998) 109-124. Zbl0914.58042MR1622800
  15. [15] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, New York, 1973. Zbl0262.53024MR350650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.