Le poisson n'a pas d'arêtes

Thierry Bousch

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 4, page 489-508
  • ISSN: 0246-0203

How to cite

top

Bousch, Thierry. "Le poisson n'a pas d'arêtes." Annales de l'I.H.P. Probabilités et statistiques 36.4 (2000): 489-508. <http://eudml.org/doc/77669>.

@article{Bousch2000,
author = {Bousch, Thierry},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Sturm measure; Sturm condition; periodic orbits; invariant measure},
language = {fre},
number = {4},
pages = {489-508},
publisher = {Gauthier-Villars},
title = {Le poisson n'a pas d'arêtes},
url = {http://eudml.org/doc/77669},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Bousch, Thierry
TI - Le poisson n'a pas d'arêtes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 4
SP - 489
EP - 508
LA - fre
KW - Sturm measure; Sturm condition; periodic orbits; invariant measure
UR - http://eudml.org/doc/77669
ER -

References

top
  1. [1] S. Bullett, P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase, Math. Proc. Camb. Phil. Soc.115 (1994). Zbl0823.58012MR1269932
  2. [2] J.M. Gambaudo, O. Lanford, C. Tresser, Dynamique symbolique des rotations, Comptes Rendus de l'Académie des Sciences de Paris299 (1984). Zbl0583.58025MR772104
  3. [3] B.R. Hunt, E. Ott, Optimal periodic orbits of chaotic systems, Phys. Rev. Lett. 76 (1996). 
  4. [4] B.R. Hunt, E. Ott, Optimal periodic orbits of chaotic systems occur at low period, Phys. Rev. E54 (1996). 
  5. [5] O.M. Jenkinson, Conjugacy rigidity, cohomological triviality, and barycentres of invariant measures, Thèse, Université de Warwick (1996). 
  6. [6] O.M. Jenkinson, On barycentres of invariant measures for circle maps, Preprint 97-28, Institut de Mathématiques de Luminy, 1997, à paraître dans Ergodic Theory and Dynamical Systems. Zbl1096.37500
  7. [7] O.M. Jenkinson, Frequency-locking on the boundary of the barycentre set, Preprint 97-29, Institut de Mathématiques de Luminy, 1997, à paraître dans Experimental Mathematics. Zbl1106.37303
  8. [8] R. Mañé, Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity9 (1996). Zbl0886.58037MR1384478
  9. [9] M. Morse, G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Am. J. Math.62 (1940). Zbl0022.34003MR745JFM66.0188.03
  10. [10] J.P. Veerman, Symbolic dynamics and rotation numbers, Physica134A (1986). Zbl0655.58019
  11. [11] J.P. Veerman, Symbolic dynamics and order-preserving orbits, Physica29D (1987). Zbl0625.28012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.