Approximations diophantiennes des nombres sturmiens
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 2, page 613-628
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topQueffélec, Martine. "Approximations diophantiennes des nombres sturmiens." Journal de théorie des nombres de Bordeaux 14.2 (2002): 613-628. <http://eudml.org/doc/248901>.
@article{Queffélec2002,
abstract = {Nous établissons pour tout nombre sturmien (de développement dyadique sturmien) des propriétés d'approximation diophantienne très précises, ne dépendant que de l'angle de la suite sturmienne, généralisant ainsi des travaux antérieurs de Ferenczi-Mauduit et Bullett-Sentenac.},
author = {Queffélec, Martine},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Sturmian numbers; diophantine approximation},
language = {fre},
number = {2},
pages = {613-628},
publisher = {Université Bordeaux I},
title = {Approximations diophantiennes des nombres sturmiens},
url = {http://eudml.org/doc/248901},
volume = {14},
year = {2002},
}
TY - JOUR
AU - Queffélec, Martine
TI - Approximations diophantiennes des nombres sturmiens
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 613
EP - 628
AB - Nous établissons pour tout nombre sturmien (de développement dyadique sturmien) des propriétés d'approximation diophantienne très précises, ne dépendant que de l'angle de la suite sturmienne, généralisant ainsi des travaux antérieurs de Ferenczi-Mauduit et Bullett-Sentenac.
LA - fre
KW - Sturmian numbers; diophantine approximation
UR - http://eudml.org/doc/248901
ER -
References
top- [1] W.W. Adams, J.L. Davison, A remarkable class of continued fractions. Proc. Amer. Math. Soc.65 (1977), 194-198. Zbl0366.10027MR441879
- [2] J.-P. Allouche, J.L. Davison, M. Queffélec, L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions. J. Number Theory91 (2001), 39-66. Zbl0998.11036MR1869317
- [3] J.-P. Allouche, L.Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory69 (1998), 119-124. Zbl0918.11016MR1611101
- [4] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France119 (1991), 199-215. Zbl0789.28011MR1116845
- [5] V. Berthé, Fréquences des facteurs des suites sturmiennes. Theoret. Comput. Sci.165 (1996), 295-309. Zbl0872.11018MR1411889
- [6] P.E. Böhmer, Über die Transzendenz gewisser dyadischer Brüche. Math. Ann.96 (1926), 367-377. Erratum ibid. page 735. Zbl52.0188.02MR1512324JFM52.0188.02
- [7] T. Bousch, Le poisson n'a pas d'arête. Ann. Inst. H. Poincaré Probab. Stat.36 (2000) 489-508. Zbl0971.37001MR1785392
- [8] S. Bullett, P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase. Math. Proc. Camb. Philos. Soc.115 (1994), 451-481. Zbl0823.58012MR1269932
- [9] L.V. Danilov, Some classes of transcendent al numbers. English Translation inMath. Notes Acad. Sci. USSR12 (1972), 524-527. Zbl0253.10026MR316391
- [10] J.L. Davison, A series and its associated continued fraction. Proc. Amer. Math. Soc.63 (1977), 29-32. Zbl0326.10030MR429778
- [11] F.M. Dekking, Transcendance du nombre de Thue-Morse. C. R. Acad. Sci. Paris, Sér. A-B285 (1977), 157-160. Zbl0362.10028MR457363
- [12] F.M. Dekking, On the Thue-Morse measure. Acta Universitatis Carolinae, Math. Phys.33 (1992), 35-40. Zbl0790.11017MR1287223
- [13] S. Ferenczi, C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory67 (1997), 146-161. Zbl0895.11029MR1486494
- [14] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers. Clarendon Press, Oxford Univ. Press, 1979. Zbl0423.10001MR568909
- [15] A. Hurwitz, Über die Kettenbruch-Entwicklung der Zahl e. Mathematische Werke, Bd 2Basel, Birkhaüser, 1933, 129-133.
- [16] T. Komatsu, A certain power series and the inhomogeneous continued fraction expansions. J. Number Theory59 (1996), 291-312. Zbl0872.11033MR1402610
- [17] P. Liardet, P. Stambul, Séries de Engel et fractions continuées. J. Théor. Nombres Bordeaux12 (2000), 37-68. Zbl1007.11045MR1827837
- [18] J.H. Loxton, A.J. Van Der Poorten, Arithmetic properties of the solutions of a class of functional equations. J. Reine Angew. Math.330 (1982), 159-172. Zbl0468.10019MR641817
- [19] M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math.62 (1940), 1-42. Zbl0022.34003MR745JFM66.0188.03
- [20] K. Nishioka, I. Shiokawa, J.-I. Tamura, Arithmetical properties of a certain power series. J. Number Theory42 (1992), 61-87. Zbl0770.11039MR1176421
- [21] G.N. Raney, On continued fractions and finite automata. Math. Ann.206 (1973), 265-283. Zbl0251.10024MR340166
- [22] D. Ridout, Rational approximations to algebraic numbers. Mathematika4 (1957), 125-131. Zbl0079.27401MR93508
- [23] K.F. Roth, Rational approximations to algebraic numbers. Mathematika2 (1955), 1-20. Corrigendum, page 168. Zbl0064.28501MR72182
- [24] R.N. Risley, L.Q. Zamboni, A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith.95 (2000) 167-184. Zbl0953.11007MR1785413
- [25] J. Shallit, Real numbers with bounded partial quotients: a survey. Enseign. Math.38 (1992), 151-187. Zbl0753.11006MR1175525
- [26] H.J.S. Smith, Note on continued fractions. Messenger Math.6 (1876), 1-14. JFM08.0107.01
- [27] J.-I. Tamura, A class of transcendental numbers having explicit g-adic and Jacobi-Perron expansions of arbitrary dimension. Acta Arith.71 (1995), 301-329. Zbl0828.11036MR1339134
- [28] A.J. Van Der Poorten, An introduction to continued fractions. In Diophantine AnalysisLondon Math. Soc. Lecture Note Ser., 109, Cambridge University Press, 1986, 99-138. Zbl0596.10008MR874123
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.