Approximations diophantiennes des nombres sturmiens
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 2, page 613-628
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] W.W. Adams, J.L. Davison, A remarkable class of continued fractions. Proc. Amer. Math. Soc.65 (1977), 194-198. Zbl0366.10027MR441879
- [2] J.-P. Allouche, J.L. Davison, M. Queffélec, L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions. J. Number Theory91 (2001), 39-66. Zbl0998.11036MR1869317
- [3] J.-P. Allouche, L.Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory69 (1998), 119-124. Zbl0918.11016MR1611101
- [4] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France119 (1991), 199-215. Zbl0789.28011MR1116845
- [5] V. Berthé, Fréquences des facteurs des suites sturmiennes. Theoret. Comput. Sci.165 (1996), 295-309. Zbl0872.11018MR1411889
- [6] P.E. Böhmer, Über die Transzendenz gewisser dyadischer Brüche. Math. Ann.96 (1926), 367-377. Erratum ibid. page 735. Zbl52.0188.02MR1512324JFM52.0188.02
- [7] T. Bousch, Le poisson n'a pas d'arête. Ann. Inst. H. Poincaré Probab. Stat.36 (2000) 489-508. Zbl0971.37001MR1785392
- [8] S. Bullett, P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase. Math. Proc. Camb. Philos. Soc.115 (1994), 451-481. Zbl0823.58012MR1269932
- [9] L.V. Danilov, Some classes of transcendent al numbers. English Translation inMath. Notes Acad. Sci. USSR12 (1972), 524-527. Zbl0253.10026MR316391
- [10] J.L. Davison, A series and its associated continued fraction. Proc. Amer. Math. Soc.63 (1977), 29-32. Zbl0326.10030MR429778
- [11] F.M. Dekking, Transcendance du nombre de Thue-Morse. C. R. Acad. Sci. Paris, Sér. A-B285 (1977), 157-160. Zbl0362.10028MR457363
- [12] F.M. Dekking, On the Thue-Morse measure. Acta Universitatis Carolinae, Math. Phys.33 (1992), 35-40. Zbl0790.11017MR1287223
- [13] S. Ferenczi, C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory67 (1997), 146-161. Zbl0895.11029MR1486494
- [14] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers. Clarendon Press, Oxford Univ. Press, 1979. Zbl0423.10001MR568909
- [15] A. Hurwitz, Über die Kettenbruch-Entwicklung der Zahl e. Mathematische Werke, Bd 2Basel, Birkhaüser, 1933, 129-133.
- [16] T. Komatsu, A certain power series and the inhomogeneous continued fraction expansions. J. Number Theory59 (1996), 291-312. Zbl0872.11033MR1402610
- [17] P. Liardet, P. Stambul, Séries de Engel et fractions continuées. J. Théor. Nombres Bordeaux12 (2000), 37-68. Zbl1007.11045MR1827837
- [18] J.H. Loxton, A.J. Van Der Poorten, Arithmetic properties of the solutions of a class of functional equations. J. Reine Angew. Math.330 (1982), 159-172. Zbl0468.10019MR641817
- [19] M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math.62 (1940), 1-42. Zbl0022.34003MR745JFM66.0188.03
- [20] K. Nishioka, I. Shiokawa, J.-I. Tamura, Arithmetical properties of a certain power series. J. Number Theory42 (1992), 61-87. Zbl0770.11039MR1176421
- [21] G.N. Raney, On continued fractions and finite automata. Math. Ann.206 (1973), 265-283. Zbl0251.10024MR340166
- [22] D. Ridout, Rational approximations to algebraic numbers. Mathematika4 (1957), 125-131. Zbl0079.27401MR93508
- [23] K.F. Roth, Rational approximations to algebraic numbers. Mathematika2 (1955), 1-20. Corrigendum, page 168. Zbl0064.28501MR72182
- [24] R.N. Risley, L.Q. Zamboni, A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith.95 (2000) 167-184. Zbl0953.11007MR1785413
- [25] J. Shallit, Real numbers with bounded partial quotients: a survey. Enseign. Math.38 (1992), 151-187. Zbl0753.11006MR1175525
- [26] H.J.S. Smith, Note on continued fractions. Messenger Math.6 (1876), 1-14. JFM08.0107.01
- [27] J.-I. Tamura, A class of transcendental numbers having explicit g-adic and Jacobi-Perron expansions of arbitrary dimension. Acta Arith.71 (1995), 301-329. Zbl0828.11036MR1339134
- [28] A.J. Van Der Poorten, An introduction to continued fractions. In Diophantine AnalysisLondon Math. Soc. Lecture Note Ser., 109, Cambridge University Press, 1986, 99-138. Zbl0596.10008MR874123