Approximations diophantiennes des nombres sturmiens

Martine Queffélec

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 2, page 613-628
  • ISSN: 1246-7405

Abstract

top
Generalizing previous results of Ferenczi-Mauduit and Bullett-Sentenac, we prove that any sturmian number (with sturmian dyadic expansion) enjoys very sharp diophantine approximation properties, depending only on the angle of the sturmian sequence.

How to cite

top

Queffélec, Martine. "Approximations diophantiennes des nombres sturmiens." Journal de théorie des nombres de Bordeaux 14.2 (2002): 613-628. <http://eudml.org/doc/248901>.

@article{Queffélec2002,
abstract = {Nous établissons pour tout nombre sturmien (de développement dyadique sturmien) des propriétés d'approximation diophantienne très précises, ne dépendant que de l'angle de la suite sturmienne, généralisant ainsi des travaux antérieurs de Ferenczi-Mauduit et Bullett-Sentenac.},
author = {Queffélec, Martine},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Sturmian numbers; diophantine approximation},
language = {fre},
number = {2},
pages = {613-628},
publisher = {Université Bordeaux I},
title = {Approximations diophantiennes des nombres sturmiens},
url = {http://eudml.org/doc/248901},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Queffélec, Martine
TI - Approximations diophantiennes des nombres sturmiens
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 2
SP - 613
EP - 628
AB - Nous établissons pour tout nombre sturmien (de développement dyadique sturmien) des propriétés d'approximation diophantienne très précises, ne dépendant que de l'angle de la suite sturmienne, généralisant ainsi des travaux antérieurs de Ferenczi-Mauduit et Bullett-Sentenac.
LA - fre
KW - Sturmian numbers; diophantine approximation
UR - http://eudml.org/doc/248901
ER -

References

top
  1. [1] W.W. Adams, J.L. Davison, A remarkable class of continued fractions. Proc. Amer. Math. Soc.65 (1977), 194-198. Zbl0366.10027MR441879
  2. [2] J.-P. Allouche, J.L. Davison, M. Queffélec, L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions. J. Number Theory91 (2001), 39-66. Zbl0998.11036MR1869317
  3. [3] J.-P. Allouche, L.Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory69 (1998), 119-124. Zbl0918.11016MR1611101
  4. [4] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France119 (1991), 199-215. Zbl0789.28011MR1116845
  5. [5] V. Berthé, Fréquences des facteurs des suites sturmiennes. Theoret. Comput. Sci.165 (1996), 295-309. Zbl0872.11018MR1411889
  6. [6] P.E. Böhmer, Über die Transzendenz gewisser dyadischer Brüche. Math. Ann.96 (1926), 367-377. Erratum ibid. page 735. Zbl52.0188.02MR1512324JFM52.0188.02
  7. [7] T. Bousch, Le poisson n'a pas d'arête. Ann. Inst. H. Poincaré Probab. Stat.36 (2000) 489-508. Zbl0971.37001MR1785392
  8. [8] S. Bullett, P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase. Math. Proc. Camb. Philos. Soc.115 (1994), 451-481. Zbl0823.58012MR1269932
  9. [9] L.V. Danilov, Some classes of transcendent al numbers. English Translation inMath. Notes Acad. Sci. USSR12 (1972), 524-527. Zbl0253.10026MR316391
  10. [10] J.L. Davison, A series and its associated continued fraction. Proc. Amer. Math. Soc.63 (1977), 29-32. Zbl0326.10030MR429778
  11. [11] F.M. Dekking, Transcendance du nombre de Thue-Morse. C. R. Acad. Sci. Paris, Sér. A-B285 (1977), 157-160. Zbl0362.10028MR457363
  12. [12] F.M. Dekking, On the Thue-Morse measure. Acta Universitatis Carolinae, Math. Phys.33 (1992), 35-40. Zbl0790.11017MR1287223
  13. [13] S. Ferenczi, C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory67 (1997), 146-161. Zbl0895.11029MR1486494
  14. [14] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers. Clarendon Press, Oxford Univ. Press, 1979. Zbl0423.10001MR568909
  15. [15] A. Hurwitz, Über die Kettenbruch-Entwicklung der Zahl e. Mathematische Werke, Bd 2Basel, Birkhaüser, 1933, 129-133. 
  16. [16] T. Komatsu, A certain power series and the inhomogeneous continued fraction expansions. J. Number Theory59 (1996), 291-312. Zbl0872.11033MR1402610
  17. [17] P. Liardet, P. Stambul, Séries de Engel et fractions continuées. J. Théor. Nombres Bordeaux12 (2000), 37-68. Zbl1007.11045MR1827837
  18. [18] J.H. Loxton, A.J. Van Der Poorten, Arithmetic properties of the solutions of a class of functional equations. J. Reine Angew. Math.330 (1982), 159-172. Zbl0468.10019MR641817
  19. [19] M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math.62 (1940), 1-42. Zbl0022.34003MR745JFM66.0188.03
  20. [20] K. Nishioka, I. Shiokawa, J.-I. Tamura, Arithmetical properties of a certain power series. J. Number Theory42 (1992), 61-87. Zbl0770.11039MR1176421
  21. [21] G.N. Raney, On continued fractions and finite automata. Math. Ann.206 (1973), 265-283. Zbl0251.10024MR340166
  22. [22] D. Ridout, Rational approximations to algebraic numbers. Mathematika4 (1957), 125-131. Zbl0079.27401MR93508
  23. [23] K.F. Roth, Rational approximations to algebraic numbers. Mathematika2 (1955), 1-20. Corrigendum, page 168. Zbl0064.28501MR72182
  24. [24] R.N. Risley, L.Q. Zamboni, A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith.95 (2000) 167-184. Zbl0953.11007MR1785413
  25. [25] J. Shallit, Real numbers with bounded partial quotients: a survey. Enseign. Math.38 (1992), 151-187. Zbl0753.11006MR1175525
  26. [26] H.J.S. Smith, Note on continued fractions. Messenger Math.6 (1876), 1-14. JFM08.0107.01
  27. [27] J.-I. Tamura, A class of transcendental numbers having explicit g-adic and Jacobi-Perron expansions of arbitrary dimension. Acta Arith.71 (1995), 301-329. Zbl0828.11036MR1339134
  28. [28] A.J. Van Der Poorten, An introduction to continued fractions. In Diophantine AnalysisLondon Math. Soc. Lecture Note Ser., 109, Cambridge University Press, 1986, 99-138. Zbl0596.10008MR874123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.