Upper and lower limits of doubly perturbed brownian motion
L. Chaumont, R. A. Doney, Y. Hu (2000)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
L. Chaumont, R. A. Doney, Y. Hu (2000)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Eugenijus Manstavičius (1996)
Journal de théorie des nombres de Bordeaux
Similarity:
A model of the Brownian motion defined in terms of the natural divisors is proposed and weak convergence of the related measures in the space [0,1] is proved. An analogon of the Erdös arcsine law, known for the prime divisors [6] (see [14] for the proof), is obtained. These results together with the author’s investigation [15] extend the systematic study [9] of the distribution of natural divisors. Our approach is based upon the functional limit theorems of probability theory. ...
A. Bendikov, L. Saloff-Coste (2004)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Mario V. Wüthrich (1999)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Fabrice Baudoin, Neil O’Connell (2011)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We consider exponential functionals of a brownian motion with drift in ℝ, defined via a collection of linear functionals. We give a characterisation of the Laplace transform of their joint law as the unique bounded solution, up to a constant factor, to a Schrödinger-type partial differential equation. We derive a similar equation for the probability density. We then characterise all diffusions which can be interpreted as having the law of the brownian motion with drift conditioned on...
Endre Csáki, Antónia Földes, Paavo Salminen (1987)
Annales de l'I.H.P. Probabilités et statistiques
Similarity: