Integrated density of states of self-similar Sturm–Liouville operators and holomorphic dynamics in higher dimension

Christophe Sabot

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 3, page 275-311
  • ISSN: 0246-0203

How to cite


Sabot, Christophe. "Integrated density of states of self-similar Sturm–Liouville operators and holomorphic dynamics in higher dimension." Annales de l'I.H.P. Probabilités et statistiques 37.3 (2001): 275-311. <>.

author = {Sabot, Christophe},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {3},
pages = {275-311},
publisher = {Elsevier},
title = {Integrated density of states of self-similar Sturm–Liouville operators and holomorphic dynamics in higher dimension},
url = {},
volume = {37},
year = {2001},

AU - Sabot, Christophe
TI - Integrated density of states of self-similar Sturm–Liouville operators and holomorphic dynamics in higher dimension
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 3
SP - 275
EP - 311
LA - eng
UR -
ER -


  1. [1] M.T Barlow, Diffusions on Fractals, St Flour Lecture Notes 1995, 1998. Zbl0916.60069MR1668115
  2. [2] M.T Barlow, J Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. Lond. Math. Soc.56 (2) (1997) 320-332. Zbl0904.35064MR1489140
  3. [3] R Carmona, J Lacroix, Spectral Theory of Random Schrödinger Operators, Probabilities and Applications, Birkhaüser, Boston, 1990. Zbl0717.60074MR1102675
  4. [4] R Forman, Functional determinants and geometry, Invent. Math.88 (1987) 447-493. Zbl0602.58044MR884797
  5. [5] R Forman, Determinants, finite-difference operators and boundary value problems, Comm. Math. Phys.147 (1992) 485-526. Zbl0767.58043MR1175491
  6. [6] J.E Fornæss, Dynamics in Several Complex Variables, CBMS, Regional Conference Series in Math., No. 87, Amer. Math. Soc, 1996. Zbl0840.58016MR1363948
  7. [7] J.E Fornæss, N Sibony, Complex dynamics in higher dimension. I, in: Complex Analytic Methods in Dynamical Systems (Rio de Janeiro, 1992), Astérisque, 222, 1994, pp. 201-231. Zbl0813.58030MR1285389
  8. [8] J.E Fornæss, N Sibony, Complex dynamics in higher dimension. II, in: Modern Methods in Complex Analysis, Ann. Math. Studies, 137, University Press, Princeton, NJ, 1995, pp. 135-182. Zbl0847.58059MR1369137
  9. [9] M Fukushima, Y Oshima, M Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Stud. Math. 19, Walter de Gruyter, Berlin, New York, 1994. Zbl0838.31001MR1303354
  10. [10] M Fukushima, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, in: Albevario S, (Eds.), Ideas and Methods in Mathematical Analysis, Stochastics and Applications, Proc. Conf. in Memory of Hoegh-Krohn, Vol. 1, Cambridge Univ. Press, Cambridge, 1993, pp. 151-161. Zbl0764.60081MR1190496
  11. [11] M Fukushima, T Shima, On the spectral analysis for the Sierpinski gasket, Potential Analysis1 (1992) 1-35. Zbl1081.31501MR1245223
  12. [12] M Fukushima, T Shima, On the discontinuity and tail behaviours of the integrated density of states for nested pre-fractals, Comm. Math. Phys.163 (1994) 461-471. Zbl0798.58049MR1284792
  13. [13] L Hörmander, Notions of Convexity, Progress in Mathematics, 127, Birkhäuser, 1994. Zbl0835.32001MR1301332
  14. [14] J Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Am. Math. Soc.335 (1993) 721-755. Zbl0773.31009MR1076617
  15. [15] J Kigami, Distributions of localized eigenvalues on post critically finite self-similar sets, J. Funct. Anal.159 (1998) 170-198. Zbl0908.35087MR1632976
  16. [16] J Kigami, M.L Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys.158 (1) (1993) 93-125. Zbl0806.35130MR1243717
  17. [17] Kusuoka S., Lecture on diffusion processes on nested fractals, in: Lecture Notes in Math., Vol. 1567, Springer. 
  18. [18] M.L Lapidus, Analysis on fractals, Laplacians on self-similar sets, non-commutative geometry and spectral dimensions, Topological Methods in Nonlinear Analysis4 (1) (1994) 137-195. Zbl0836.35108MR1321811
  19. [19] Y Le Jan, Mesures associées à une forme de Dirichlet. Applications, Bull. Soc. Math. de France106 (1978) 61-112. Zbl0393.31008MR508949
  20. [20] T Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc.420 (1990). Zbl0688.60065MR988082
  21. [21] L Pastur, A Figotin, Spectra of Random and Almost-Periodic Operators, Grundlehren der mathematischen Wissenschaften, 297, Springer-Verlag, Berlin, Heidelberg, 1992. Zbl0752.47002MR1223779
  22. [22] R Rammal, Spectrum of harmonic excitations on fractals, J. de Physique45 (1984) 191-206. MR737523
  23. [23] R Rammal, G Toulouse, J. Phys. Lett.44 (1983) L-13. 
  24. [24] X Rudin, Real and Complex Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, NY, 1966. Zbl0142.01701MR210528
  25. [25] C Sabot, Existence and uniqueness of diffusions on finitely ramified self-similar fractals, Ann. Scient. Ec. Norm. Sup., 4ème série30 (1997) 605-673. Zbl0924.60064MR1474807
  26. [26] Sabot C., Density of states of diffusions on self-similar sets and holomorphic dynamics in Pk: the example of the interval [0,1], Comptes Rendus à l'Académie des Sciences, to appear. Zbl0922.60040
  27. [27] Sibony N., Dynamique des applications rationnelles de Pk, preprint. MR1760844
  28. [28] N Steinmetz, Rational Iteration, de Gruyter Studies in Mathematics, 16, W. de Gruyter, Berlin, 1993. Zbl0773.58010MR1224235

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.