Existence and uniqueness of diffusions on finitely ramified self-similar fractals

C. Sabot

Annales scientifiques de l'École Normale Supérieure (1997)

  • Volume: 30, Issue: 5, page 605-673
  • ISSN: 0012-9593

How to cite

top

Sabot, C.. "Existence and uniqueness of diffusions on finitely ramified self-similar fractals." Annales scientifiques de l'École Normale Supérieure 30.5 (1997): 605-673. <http://eudml.org/doc/82445>.

@article{Sabot1997,
author = {Sabot, C.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Brownian motion; fractals; Dirichlet forms},
language = {eng},
number = {5},
pages = {605-673},
publisher = {Elsevier},
title = {Existence and uniqueness of diffusions on finitely ramified self-similar fractals},
url = {http://eudml.org/doc/82445},
volume = {30},
year = {1997},
}

TY - JOUR
AU - Sabot, C.
TI - Existence and uniqueness of diffusions on finitely ramified self-similar fractals
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 5
SP - 605
EP - 673
LA - eng
KW - Brownian motion; fractals; Dirichlet forms
UR - http://eudml.org/doc/82445
ER -

References

top
  1. [1] M. T. BARLOW, Random walks, electrical resistance, and nested fractals (Asymptotic Problems in Probability Theory : Stochastic models and diffusions on fractals, Montreal : Longman, 1993, pp. 131-157). Zbl0791.60097MR96i:60082
  2. [2] M. T. BARLOW and R. F. BASS, Construction of the Brownian motion on the Sierpinski carpet, (Ann. Inst. Henri Poincaré, Vol. 25, 1989, pp. 225-257). Zbl0691.60070MR91d:60183
  3. [3] M. T. BARLOW and E. A. PERKINS, Brownian motion on the Sierpinski gasket (Prob. Th. Rel. Fields, Vol. 79, 1988, pp. 543-623). Zbl0635.60090MR89g:60241
  4. [4] C. M. DAFERMOS and M. SLEMROD, Asymptotic behaviour of non-linear contraction semigroups (J. Functional Analysis, Vol. 13, 1973, pp. 97-106). Zbl0267.34062MR49 #11336
  5. [5] P. G. DOYLE and J. L. SNELL. Randon walks and electrical networks (Math. Assoc. Amer., 1984). Zbl0583.60065
  6. [6] FALCONER, Fractal Geometry : Mathematical Foundations and Applications, Wiley, Chichester, 1990. Zbl0689.28003
  7. [7] M. FUKUSHIMA, Y. OSHIMA and M. TAKEDA, Dirichlet forms and symetric Markov processes (de Gruyter Stud. Math., Vol. 19, Walter de Gruyter, Berlin, New-York, 1994). Zbl0838.31001MR96f:60126
  8. [8] M. FUKUSHIMA, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, in : Ideas and Methods in Mathematical analysis, Stochastics and Applications (Proc. Conf. in Memory of Hoegh-Krohn, Vol. 1 (S. Albevario et al., eds.), Cambridge Univ. Press, Cambridge, 1993, pp. 151-161). Zbl0764.60081MR94d:60129
  9. [9] S. GOLDSTEIN, Random walks and diffusions on fractals, in : IMA Math Appl., Vol. 8 (H. Kesten, ed.), Springer-Verlag, New York, 1987, pp. 121-129). Zbl0621.60073MR88g:60245
  10. [10] K. HATTORI, T. HATTORI, H. WATANABE, Gaussian field theories on general networks and the spectral dimensions (Progress of Theoritical Physics, Supplement No 92, 1987). MR89k:81118
  11. [11] J. E. HUTCHINSON, Fractals and self-similarity (Indiana Univ. Math. J., Vol. 30, 1981, pp. 713-747). Zbl0598.28011MR82h:49026
  12. [12] J. KIGAMI, Harmonic calculus on p.c.f. self-similar sets, (Trans. Am. Math. Soc., Vol. 335, 1993, pp. 721-755). Zbl0773.31009MR93d:39008
  13. [13] J. KIGAMI, Harmonic calculus on limits of networks and its application to dendrites (Journal of Functional Analysis, Vol. 128, No. 1, February 15, 1995). Zbl0820.60060MR96e:60130
  14. [14] T. KUMAGAI, Regularity, closedness, and spectral dimension of the Dirichlet forms on p.c.f. self-similar sets (J. Math. Kyoto Univ., Vol. 33, 1993, pp. 765-786). Zbl0798.58042MR94i:28006
  15. [15] S. KUSUOKA, A diffusion process on a fractal, in : (Probabilistic Methods in Mathematical Physics (Proc. of Taniguchi Intern. Symp. (K. Ito and N. Ikeda, eds.) Kinokuniya, Tokyo, 1987, pp. 251-274). Zbl0645.60081MR89e:60149
  16. [16] S. KUSUOKA, Lecture on diffusion processes on nested fractals, Springer Lecture Notes in Math. 
  17. [17] M. L. LAPIDUS, Analysis on fractals, Laplacians on self-similar sets, non-commutative geometry and spectral dimensions (Topological Methods in Nonlinear Analysis, Vol. 4, No 1, 1994 i, pp. 137-195). Zbl0836.35108MR96g:58196
  18. [18] Y. LE JAN, Mesures associées à une forme de Dirichlet. Applications (Bull. Soc. Math. de France, Vol. 106, 1978, pp. 61-112). Zbl0393.31008MR81c:31014
  19. [19] T. LINDSTRØM, Brownian motion on nested fractals (Mem. Amer. Math. Soc., Vol. 420, 1990). Zbl0688.60065
  20. [20] V. METZ, How many diffusions exist on the Viscek snowflake (Acta Applicandae Mathematicae, Vol. 32, 1993, pp. 227-241). Zbl0795.31011MR94m:31010
  21. [21] V. METZ, Hilbert's Projective metric on cones of Dirichlet forms (Journal of Functional Analysis, Vol. 127, No 2, 1995). Zbl0831.47047MR96c:31009
  22. [22] MORAN, Additive functions of intervals and Haussdorf measure (Math. Proc., Cambridge Philos. Soc., Vol. 42, 1946, pp. 15-23). Zbl0063.04088MR7,278f
  23. [23] R.D. NUSSBAUM, Hilbert's Projective Metric and Iterated Nonlinear Maps (Mem. Am. Math. Soc., Vol. 75, No 391, Amer. Math. Soc. Providence, 1988). Zbl0666.47028MR89m:47046
  24. [24] S. ROEHRIG and R. SINE, The structure of w-limit sets of non-expansive maps (Proc. Amer. Math. Soc., Vol. 81, 1981, pp. 398-400). Zbl0474.47033MR82f:47068
  25. [25] C. SABOT, Diffusions sur les espaces fractals (Thèse de l'université Pierre et Marie Curie, 1995). 
  26. [26] C. SABOT, Existence et unicité de la diffusion sur un espace fractal (C. R. Acad. Sci. Paris, T. 321, Séries I, pp. 1053-1059, 1995). Zbl0848.60076MR96i:60085
  27. [27] C. SABOT, Espaces de Dirichlet reliés par des points. Application au calcul de l'opérateur de renormalisation sur les fractals finiment ramifiés, Preprint. 
  28. [28] W. SIERPINSKI, Sur une courbe Cantorienne qui contient une image biunivoque et continue de toute courbe donnée (C. R. Acad. Sci. Paris, T. 162, 1916, pp. 629-632). Zbl46.0295.02JFM46.0295.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.