Existence and uniqueness of diffusions on finitely ramified self-similar fractals
Annales scientifiques de l'École Normale Supérieure (1997)
- Volume: 30, Issue: 5, page 605-673
- ISSN: 0012-9593
Access Full Article
topHow to cite
topSabot, C.. "Existence and uniqueness of diffusions on finitely ramified self-similar fractals." Annales scientifiques de l'École Normale Supérieure 30.5 (1997): 605-673. <http://eudml.org/doc/82445>.
@article{Sabot1997,
author = {Sabot, C.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Brownian motion; fractals; Dirichlet forms},
language = {eng},
number = {5},
pages = {605-673},
publisher = {Elsevier},
title = {Existence and uniqueness of diffusions on finitely ramified self-similar fractals},
url = {http://eudml.org/doc/82445},
volume = {30},
year = {1997},
}
TY - JOUR
AU - Sabot, C.
TI - Existence and uniqueness of diffusions on finitely ramified self-similar fractals
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 5
SP - 605
EP - 673
LA - eng
KW - Brownian motion; fractals; Dirichlet forms
UR - http://eudml.org/doc/82445
ER -
References
top- [1] M. T. BARLOW, Random walks, electrical resistance, and nested fractals (Asymptotic Problems in Probability Theory : Stochastic models and diffusions on fractals, Montreal : Longman, 1993, pp. 131-157). Zbl0791.60097MR96i:60082
- [2] M. T. BARLOW and R. F. BASS, Construction of the Brownian motion on the Sierpinski carpet, (Ann. Inst. Henri Poincaré, Vol. 25, 1989, pp. 225-257). Zbl0691.60070MR91d:60183
- [3] M. T. BARLOW and E. A. PERKINS, Brownian motion on the Sierpinski gasket (Prob. Th. Rel. Fields, Vol. 79, 1988, pp. 543-623). Zbl0635.60090MR89g:60241
- [4] C. M. DAFERMOS and M. SLEMROD, Asymptotic behaviour of non-linear contraction semigroups (J. Functional Analysis, Vol. 13, 1973, pp. 97-106). Zbl0267.34062MR49 #11336
- [5] P. G. DOYLE and J. L. SNELL. Randon walks and electrical networks (Math. Assoc. Amer., 1984). Zbl0583.60065
- [6] FALCONER, Fractal Geometry : Mathematical Foundations and Applications, Wiley, Chichester, 1990. Zbl0689.28003
- [7] M. FUKUSHIMA, Y. OSHIMA and M. TAKEDA, Dirichlet forms and symetric Markov processes (de Gruyter Stud. Math., Vol. 19, Walter de Gruyter, Berlin, New-York, 1994). Zbl0838.31001MR96f:60126
- [8] M. FUKUSHIMA, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, in : Ideas and Methods in Mathematical analysis, Stochastics and Applications (Proc. Conf. in Memory of Hoegh-Krohn, Vol. 1 (S. Albevario et al., eds.), Cambridge Univ. Press, Cambridge, 1993, pp. 151-161). Zbl0764.60081MR94d:60129
- [9] S. GOLDSTEIN, Random walks and diffusions on fractals, in : IMA Math Appl., Vol. 8 (H. Kesten, ed.), Springer-Verlag, New York, 1987, pp. 121-129). Zbl0621.60073MR88g:60245
- [10] K. HATTORI, T. HATTORI, H. WATANABE, Gaussian field theories on general networks and the spectral dimensions (Progress of Theoritical Physics, Supplement No 92, 1987). MR89k:81118
- [11] J. E. HUTCHINSON, Fractals and self-similarity (Indiana Univ. Math. J., Vol. 30, 1981, pp. 713-747). Zbl0598.28011MR82h:49026
- [12] J. KIGAMI, Harmonic calculus on p.c.f. self-similar sets, (Trans. Am. Math. Soc., Vol. 335, 1993, pp. 721-755). Zbl0773.31009MR93d:39008
- [13] J. KIGAMI, Harmonic calculus on limits of networks and its application to dendrites (Journal of Functional Analysis, Vol. 128, No. 1, February 15, 1995). Zbl0820.60060MR96e:60130
- [14] T. KUMAGAI, Regularity, closedness, and spectral dimension of the Dirichlet forms on p.c.f. self-similar sets (J. Math. Kyoto Univ., Vol. 33, 1993, pp. 765-786). Zbl0798.58042MR94i:28006
- [15] S. KUSUOKA, A diffusion process on a fractal, in : (Probabilistic Methods in Mathematical Physics (Proc. of Taniguchi Intern. Symp. (K. Ito and N. Ikeda, eds.) Kinokuniya, Tokyo, 1987, pp. 251-274). Zbl0645.60081MR89e:60149
- [16] S. KUSUOKA, Lecture on diffusion processes on nested fractals, Springer Lecture Notes in Math.
- [17] M. L. LAPIDUS, Analysis on fractals, Laplacians on self-similar sets, non-commutative geometry and spectral dimensions (Topological Methods in Nonlinear Analysis, Vol. 4, No 1, 1994 i, pp. 137-195). Zbl0836.35108MR96g:58196
- [18] Y. LE JAN, Mesures associées à une forme de Dirichlet. Applications (Bull. Soc. Math. de France, Vol. 106, 1978, pp. 61-112). Zbl0393.31008MR81c:31014
- [19] T. LINDSTRØM, Brownian motion on nested fractals (Mem. Amer. Math. Soc., Vol. 420, 1990). Zbl0688.60065
- [20] V. METZ, How many diffusions exist on the Viscek snowflake (Acta Applicandae Mathematicae, Vol. 32, 1993, pp. 227-241). Zbl0795.31011MR94m:31010
- [21] V. METZ, Hilbert's Projective metric on cones of Dirichlet forms (Journal of Functional Analysis, Vol. 127, No 2, 1995). Zbl0831.47047MR96c:31009
- [22] MORAN, Additive functions of intervals and Haussdorf measure (Math. Proc., Cambridge Philos. Soc., Vol. 42, 1946, pp. 15-23). Zbl0063.04088MR7,278f
- [23] R.D. NUSSBAUM, Hilbert's Projective Metric and Iterated Nonlinear Maps (Mem. Am. Math. Soc., Vol. 75, No 391, Amer. Math. Soc. Providence, 1988). Zbl0666.47028MR89m:47046
- [24] S. ROEHRIG and R. SINE, The structure of w-limit sets of non-expansive maps (Proc. Amer. Math. Soc., Vol. 81, 1981, pp. 398-400). Zbl0474.47033MR82f:47068
- [25] C. SABOT, Diffusions sur les espaces fractals (Thèse de l'université Pierre et Marie Curie, 1995).
- [26] C. SABOT, Existence et unicité de la diffusion sur un espace fractal (C. R. Acad. Sci. Paris, T. 321, Séries I, pp. 1053-1059, 1995). Zbl0848.60076MR96i:60085
- [27] C. SABOT, Espaces de Dirichlet reliés par des points. Application au calcul de l'opérateur de renormalisation sur les fractals finiment ramifiés, Preprint.
- [28] W. SIERPINSKI, Sur une courbe Cantorienne qui contient une image biunivoque et continue de toute courbe donnée (C. R. Acad. Sci. Paris, T. 162, 1916, pp. 629-632). Zbl46.0295.02JFM46.0295.02
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.