On a probabilistic description of small scale structures in 3D fluids
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 2, page 207-228
- ISSN: 0246-0203
Access Full Article
topHow to cite
topFlandoli, Franco. "On a probabilistic description of small scale structures in 3D fluids." Annales de l'I.H.P. Probabilités et statistiques 38.2 (2002): 207-228. <http://eudml.org/doc/77714>.
@article{Flandoli2002,
author = {Flandoli, Franco},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {small scale structures; vortex structure; three-dimensional Brownian motion; interaction energy; total energy; intersection local time},
language = {eng},
number = {2},
pages = {207-228},
publisher = {Elsevier},
title = {On a probabilistic description of small scale structures in 3D fluids},
url = {http://eudml.org/doc/77714},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Flandoli, Franco
TI - On a probabilistic description of small scale structures in 3D fluids
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 2
SP - 207
EP - 228
LA - eng
KW - small scale structures; vortex structure; three-dimensional Brownian motion; interaction energy; total energy; intersection local time
UR - http://eudml.org/doc/77714
ER -
References
top- [1] Akao J., Unpublished manuscript, UC Berkeley, 1996; Phase transitions and connectivity in the three-dimensional vortex equilibria, Ph.D Thesis, UC Berkeley, 1994.
- [2] S. Albeverio, A.B. Cruzeiro, Global flows with invariant (Gibbs) measures for Euler and Navier–Stokes two-dimensional fluids, Comm. Math. Phys.129 (1990) 431-444. Zbl0702.76041
- [3] J. Bell, D. Marcus, Vorticity intensification and the transition to turbulence in the three-dimensional Euler equations, Comm. Math. Phys.147 (1992) 371-394. Zbl0755.76062MR1174419
- [4] E. Bolthausen, On the construction of the three-dimensional polymer measure, Probab. Theory Related Fields97 (1993) 81-101. Zbl0794.60104MR1240717
- [5] A. Chorin, Vorticity and Turbulence, Springer, New York, 1994. Zbl0795.76002MR1281384
- [6] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields100 (1994) 365-393. Zbl0819.58023MR1305587
- [7] F. Flandoli, Dissipativity and invariant measures for stochastic Navier–Stokes equations, Nonlin. Diff. Eq. Appl.1 (1994) 403-423. Zbl0820.35108
- [8] F. Flandoli, D. Ga̧tarek, Martingale and stationary solutions for stochastic Navier–Stokes equations, Probab. Theory Related Fields102 (1995) 367-391. Zbl0831.60072
- [9] F. Flandoli, B. Maslowski, Ergodicity of the 2-D Navier–Stokes equation under random perturbations, Comm. Math. Phys.171 (1995) 119-141. Zbl0845.35080
- [10] G. Gallavotti, Meccanica dei Fluidi, Quaderni CNR – GNAFA, 52, Roma, 1996.
- [11] P. Imkeller, V. Perez-Abreu, J. Vives, Chaos expansions of double intersection local time of Brownian motion in Rd and renormalization, Stoch. Proc. Their Appl.56 (1995) 1-34. Zbl0822.60048MR1324319
- [12] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, in: Hennequin P.L. (Ed.), École d'été de Saint-Flour XII, 1982, LNM, 1097, Springer, Berlin, 1984. Zbl0554.60066MR876080
- [13] N.S. Landkof, Foundations of Modern Potential Theory, Springer, New York, 1972. Zbl0253.31001MR350027
- [14] J.F. Le Gall, Sur le temps local d'intersection du mouvement Brownien plan, et la méthode de renormalisation de Varadhan, in: Sém. de Prob. XIX 1983/84, LNM, 1123, Springer, Berlin, 1985, pp. 314-331. Zbl0563.60072MR889492
- [15] J.F. Le Gall, Some properties of planar Brownian motion, in: École d'été de Saint-Flour XX, 1990, LNM, 1527, Springer, Berlin, 1992. Zbl0779.60068MR1229519
- [16] P.L. Lions, On Euler Equations and Statistical Physics, Quaderni Scuola Nornale Superiore of Pisa, Pisa, 1997. Zbl1024.35085MR1657480
- [17] C. Marchioro, M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer, Berlin, 1994. Zbl0789.76002MR1245492
- [18] P.L. Lions, A. Majda, Equilibrium statistical theory for nearly parallel vortex filaments, Comm. Pure Appl. Math.53 (2000), to appear. Zbl1041.76038MR1715529
- [19] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1994. Zbl0804.60001MR1303781
- [20] J. Rosen, A local time approach to the self-intersections of Brownian paths in space, Comm. Math. Phys.88 (1983) 327-338. Zbl0534.60070MR701921
- [21] J. Rosen, A representation for the intersection local time of Brownian motion in space, Ann. Probab.13 (1985) 145-153. Zbl0561.60086MR770634
- [22] J. Ruiz de Chavez, Sur les integrales stochastiques multiples, in: Sém. de Prob. XIX, 1983/84, LNM, 1123, Springer, Berlin, 1985, pp. 248-262. Zbl0564.60052MR889483
- [23] F. Russo, P. Vallois, The generalized covariation process and Ito formula, Stoch. Proc. Their Appl.59 (1995) 81-104. Zbl0840.60052MR1350257
- [24] F. Russo, P. Vallois, Ito formula for C1-functions of semimartinagales, Probab. Theory Relat. Fields104 (1996) 27-41. Zbl0838.60045MR1367665
- [25] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer, Berlin, 1998. Zbl0973.60003MR1717054
- [26] B. Toth, W. Werner, The true self-repelling motion, Probab. Theory Related Fields111 (1998) 375-452. Zbl0912.60056MR1640799
- [27] M.I. Vishik, A.V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer, Dordrecht, 1980. Zbl0688.35077MR591678
- [28] J. Westwater, On Edwards model for long polymer chains, Comm. Math. Phys.72 (1980) 131-174. Zbl0431.60100MR573702
- [29] M. Yor, Compléments aux formules de Tanaka–Rosen, in: Sém. de Prob. XIX, 1983/84, LNM, 1123, Springer, Berlin, 1985, pp. 332-348. Zbl0563.60073
- [30] M. Yor, Renormalisation et convergence en loi pour le temps locaux d'intersection du mouvement brownien dans R3, in: Sém. de Prob. XIX, 1983/84, LNM, 1123, Springer, Berlin, 1985, pp. 350-365. Zbl0569.60075MR889494
Citations in EuDML Documents
top- Franco Flandoli, Marco Romito, Probabilistic analysis of singularities for the 3D Navier-Stokes equations
- David Nualart, Stochastic calculus with respect to fractional Brownian motion
- Franco Flandoli, Massimiliano Gubinelli, Francesco Russo, On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.