Rates of strong uniform consistency for multivariate kernel density estimators
Annales de l'I.H.P. Probabilités et statistiques (2002)
- Volume: 38, Issue: 6, page 907-921
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGiné, Evarist, and Guillou, Armelle. "Rates of strong uniform consistency for multivariate kernel density estimators." Annales de l'I.H.P. Probabilités et statistiques 38.6 (2002): 907-921. <http://eudml.org/doc/77748>.
@article{Giné2002,
author = {Giné, Evarist, Guillou, Armelle},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {uniformly almost sure rates; kernel density estimators; general upper bound; exact bound},
language = {eng},
number = {6},
pages = {907-921},
publisher = {Elsevier},
title = {Rates of strong uniform consistency for multivariate kernel density estimators},
url = {http://eudml.org/doc/77748},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Giné, Evarist
AU - Guillou, Armelle
TI - Rates of strong uniform consistency for multivariate kernel density estimators
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2002
PB - Elsevier
VL - 38
IS - 6
SP - 907
EP - 921
LA - eng
KW - uniformly almost sure rates; kernel density estimators; general upper bound; exact bound
UR - http://eudml.org/doc/77748
ER -
References
top- [1] K. Alexander, Probability inequalities for empirical processes and a law of iterated logarithm, Ann. Probab.12 (1984) 1041-1067. Zbl0549.60024MR757769
- [2] P. Deheuvels, Uniform limit laws for kernel density estimators on possibly unbounded intervals, in: Limnios N., Nikulin M. (Eds.), Recent Advances in Reliability Theory: Methodology, Practice and Inference, Birkhauser, Boston, 2000, pp. 477-492. Zbl0997.62038MR1783500
- [3] V. de la Peña, E. Giné, Decoupling, from Dependence to Independence, Springer-Verlag, New York, 1999. Zbl0918.60021MR1666908
- [4] R.M. Dudley, Uniform Central Limit Theorems, Cambridge University Press, Cambridge, UK, 1999. Zbl0951.60033MR1720712
- [5] U. Einmahl, D. Mason, Some universal results on the behavior of increments of partial sums, Ann. Probab.24 (1996) 1388-1407. Zbl0872.60022MR1411499
- [6] U. Einmahl, D. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, J. Theoret. Probab.13 (2000) 1-37. Zbl0995.62042MR1744994
- [7] E. Giné, A. Guillou, On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals, Ann. Inst. Henri Poincaré – PR37 (2001) 503-522. Zbl0974.62030
- [8] E. Giné, V.I. Koltchinskii, J. Zinn, Weighted uniform consistency of kernel density estimators, Preprint, 2001. Zbl1052.62034
- [9] P. Massart, Rates of convergence in the central limit theorem for empirical processes, Ann. Inst. Henri Poincaré22 (1986) 381-423. Zbl0615.60032MR871904
- [10] S.J. Montgomery-Smith, Comparison of sums of independent identically distributed random vectors, Probab. Math. Statist.14 (1993) 281-285. Zbl0827.60005MR1321767
- [11] D. Nolan, D. Pollard, U-processes: rates of convergence, Ann. Statist.15 (1987) 780-799. Zbl0624.60048MR888439
- [12] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist.27 (1956) 832-835. Zbl0073.14602MR79873
- [13] B.W. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives, Ann. Statist.6 (1978) 177-189. Zbl0376.62024MR471166
- [14] W. Stute, The oscillation behavior of empirical processes: the multivariate case, Ann. Probab.12 (1984) 361-379. Zbl0533.62037MR735843
- [15] M. Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab.22 (1994) 28-76. Zbl0798.60051MR1258865
- [16] M. Talagrand, New concentration inequalities in product spaces, Invent. Math.126 (1996) 505-563. Zbl0893.60001MR1419006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.