On consistency of kernel density estimators for randomly censored data : rates holding uniformly over adaptive intervals
Annales de l'I.H.P. Probabilités et statistiques (2001)
- Volume: 37, Issue: 4, page 503-522
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGiné, Evarist, and Guillou, Armelle. "On consistency of kernel density estimators for randomly censored data : rates holding uniformly over adaptive intervals." Annales de l'I.H.P. Probabilités et statistiques 37.4 (2001): 503-522. <http://eudml.org/doc/77697>.
@article{Giné2001,
author = {Giné, Evarist, Guillou, Armelle},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {censored data; uniform almost sure rates; kernel density estimators; exponential inequalities; product limit estimator},
language = {eng},
number = {4},
pages = {503-522},
publisher = {Elsevier},
title = {On consistency of kernel density estimators for randomly censored data : rates holding uniformly over adaptive intervals},
url = {http://eudml.org/doc/77697},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Giné, Evarist
AU - Guillou, Armelle
TI - On consistency of kernel density estimators for randomly censored data : rates holding uniformly over adaptive intervals
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 4
SP - 503
EP - 522
LA - eng
KW - censored data; uniform almost sure rates; kernel density estimators; exponential inequalities; product limit estimator
UR - http://eudml.org/doc/77697
ER -
References
top- [1] O.O Aalen, Nonparametric inference in connection with multiple decrement models, Scand. J. Statist.3 (1976) 15-27. Zbl0331.62030MR400529
- [2] K Alexander, Probability inequalities for empirical processes and a law of iterated logarithm, Ann. Probab.12 (1984) 1041-1067. Zbl0549.60024MR757769
- [3] D Bitouzé, B Laurent, P Massart, A Dvoretzky–Kiefer–Wolfowitz type inequality for the Kaplan–Meier estimator, Ann. Inst. Henri Poincaré35 (1999) 735-763. Zbl1054.62589MR1725709
- [4] N Breslow, J Crowley, A large sample study of the life table and product limit estimates under random censorship, Ann. Statist.2 (1974) 437-453. Zbl0283.62023MR458674
- [5] S Csörgő, Universal Gaussian approximations under random censorship, Ann. Statist.24 (1996) 2744-2778. Zbl0868.62042MR1425977
- [6] V de la Peña, E Giné, Decoupling, from Dependence to Independence, Springer-Verlag, New York, 1999. Zbl0918.60021MR1666908
- [7] S Diehl, W Stute, Kernel density and hazard function estimation in the presence of censoring, J. Multivariate Anal.25 (1988) 299-310. Zbl0661.62028MR940545
- [8] U Einmahl, D Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, J. Theor. Probab.13 (2000) 1-37. Zbl0995.62042MR1744994
- [9] E Giné, A Guillou, Laws of the iterated logarithm for censored data, Ann. Probab.27 (1999) 2042-2067. Zbl0984.62023MR1742901
- [10] E.L Kaplan, P Meier, Non-parametric estimation from incomplete observations, J. Amer. Statist. Assoc.53 (1958) 457-481. Zbl0089.14801MR93867
- [11] P Massart, Rates of convergence in the central limit theorem for empirical processes, Ann. Inst. Henri Poincaré22 (1986) 381-423. Zbl0615.60032MR871904
- [12] S.J Montgomery-Smith, Comparison of sums of independent identically distributed random vectors, Probab. Math. Statist.14 (1993) 281-285. Zbl0827.60005MR1321767
- [13] W Nelson, Theory and applications of hazard plotting for censored failure data, Technometrics14 (1972) 945-966.
- [14] W Stute, Strong and weak representations of cumulative hazard function and Kaplan–Meier estimators on increasing sets, J. Statist. Plann. Inference42 (1994) 315-329. Zbl0815.62016MR1309627
- [15] M Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab.22 (1994) 28-76. Zbl0798.60051MR1258865
- [16] M Talagrand, New concentration inequalities in product spaces, Invent. Math.126 (1996) 505-563. Zbl0893.60001MR1419006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.