On consistency of kernel density estimators for randomly censored data : rates holding uniformly over adaptive intervals

Evarist Giné; Armelle Guillou

Annales de l'I.H.P. Probabilités et statistiques (2001)

  • Volume: 37, Issue: 4, page 503-522
  • ISSN: 0246-0203

How to cite

top

Giné, Evarist, and Guillou, Armelle. "On consistency of kernel density estimators for randomly censored data : rates holding uniformly over adaptive intervals." Annales de l'I.H.P. Probabilités et statistiques 37.4 (2001): 503-522. <http://eudml.org/doc/77697>.

@article{Giné2001,
author = {Giné, Evarist, Guillou, Armelle},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {censored data; uniform almost sure rates; kernel density estimators; exponential inequalities; product limit estimator},
language = {eng},
number = {4},
pages = {503-522},
publisher = {Elsevier},
title = {On consistency of kernel density estimators for randomly censored data : rates holding uniformly over adaptive intervals},
url = {http://eudml.org/doc/77697},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Giné, Evarist
AU - Guillou, Armelle
TI - On consistency of kernel density estimators for randomly censored data : rates holding uniformly over adaptive intervals
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2001
PB - Elsevier
VL - 37
IS - 4
SP - 503
EP - 522
LA - eng
KW - censored data; uniform almost sure rates; kernel density estimators; exponential inequalities; product limit estimator
UR - http://eudml.org/doc/77697
ER -

References

top
  1. [1] O.O Aalen, Nonparametric inference in connection with multiple decrement models, Scand. J. Statist.3 (1976) 15-27. Zbl0331.62030MR400529
  2. [2] K Alexander, Probability inequalities for empirical processes and a law of iterated logarithm, Ann. Probab.12 (1984) 1041-1067. Zbl0549.60024MR757769
  3. [3] D Bitouzé, B Laurent, P Massart, A Dvoretzky–Kiefer–Wolfowitz type inequality for the Kaplan–Meier estimator, Ann. Inst. Henri Poincaré35 (1999) 735-763. Zbl1054.62589MR1725709
  4. [4] N Breslow, J Crowley, A large sample study of the life table and product limit estimates under random censorship, Ann. Statist.2 (1974) 437-453. Zbl0283.62023MR458674
  5. [5] S Csörgő, Universal Gaussian approximations under random censorship, Ann. Statist.24 (1996) 2744-2778. Zbl0868.62042MR1425977
  6. [6] V de la Peña, E Giné, Decoupling, from Dependence to Independence, Springer-Verlag, New York, 1999. Zbl0918.60021MR1666908
  7. [7] S Diehl, W Stute, Kernel density and hazard function estimation in the presence of censoring, J. Multivariate Anal.25 (1988) 299-310. Zbl0661.62028MR940545
  8. [8] U Einmahl, D Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, J. Theor. Probab.13 (2000) 1-37. Zbl0995.62042MR1744994
  9. [9] E Giné, A Guillou, Laws of the iterated logarithm for censored data, Ann. Probab.27 (1999) 2042-2067. Zbl0984.62023MR1742901
  10. [10] E.L Kaplan, P Meier, Non-parametric estimation from incomplete observations, J. Amer. Statist. Assoc.53 (1958) 457-481. Zbl0089.14801MR93867
  11. [11] P Massart, Rates of convergence in the central limit theorem for empirical processes, Ann. Inst. Henri Poincaré22 (1986) 381-423. Zbl0615.60032MR871904
  12. [12] S.J Montgomery-Smith, Comparison of sums of independent identically distributed random vectors, Probab. Math. Statist.14 (1993) 281-285. Zbl0827.60005MR1321767
  13. [13] W Nelson, Theory and applications of hazard plotting for censored failure data, Technometrics14 (1972) 945-966. 
  14. [14] W Stute, Strong and weak representations of cumulative hazard function and Kaplan–Meier estimators on increasing sets, J. Statist. Plann. Inference42 (1994) 315-329. Zbl0815.62016MR1309627
  15. [15] M Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab.22 (1994) 28-76. Zbl0798.60051MR1258865
  16. [16] M Talagrand, New concentration inequalities in product spaces, Invent. Math.126 (1996) 505-563. Zbl0893.60001MR1419006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.