Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 1, page 61-80
- ISSN: 0246-0203
Access Full Article
topHow to cite
topValkó, Benedek. "Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems." Annales de l'I.H.P. Probabilités et statistiques 42.1 (2006): 61-80. <http://eudml.org/doc/77887>.
@article{Valkó2006,
author = {Valkó, Benedek},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {relative entropy; hyperbolic system of conservation laws},
language = {eng},
number = {1},
pages = {61-80},
publisher = {Elsevier},
title = {Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems},
url = {http://eudml.org/doc/77887},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Valkó, Benedek
TI - Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 1
SP - 61
EP - 80
LA - eng
KW - relative entropy; hyperbolic system of conservation laws
UR - http://eudml.org/doc/77887
ER -
References
top- [1] M. Balázs, Growth fluctuations in interface models, Ann. Inst. H. Poincaré Probab. Statist.39 (2003) 639-685. Zbl1029.60075MR1983174
- [2] R.N. Bhattacharya, R. Ranga Rao, Normal Approximation and Asymptotic Expansions, Wiley, 1976. Zbl0331.41023MR436272
- [3] C. Cocozza, Processus des misanthropes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete70 (1985) 509-523. Zbl0554.60097MR807334
- [4] R.J. DiPerna, A. Majda, The validity of nonlinear geometric optics for weak solutions of conservation laws, Commun. Math. Phys.98 (1985) 313-347. Zbl0582.35081MR788777
- [5] R. Esposito, R. Marra, H.T. Yau, Diffusive limit of asymmetric simple exclusion, Rev. Math. Phys.6 (1994) 1233-1267. Zbl0841.60082MR1301374
- [6] J. Fritz, B. Tóth, Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas, Commun. Math. Phys.249 (2004) 1-27. Zbl1126.82015MR2077251
- [7] J.K. Hunter, J.B. Keller, Weakly nonlinear high frequency waves, Commun. Pure Appl. Math.36 (1983) 547-569. Zbl0547.35070MR716196
- [8] C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems, Springer, 1999. Zbl0927.60002MR1707314
- [9] C. Landim, S. Sethuraman, S.R.S. Varadhan, Spectral gap for zero range dynamics, Ann. Probab.24 (1986) 1871-1902. Zbl0870.60095MR1415232
- [10] S. Olla, S.R.S. Varadhan, H.T. Yau, Hydrodynamical limit for Hamiltonian system with weak noise, Commun. Math. Phys.155 (1993) 523-560. Zbl0781.60101MR1231642
- [11] V. Popkov, G.M. Schütz, Shocks and excitation dynamics in driven diffusive two channel systems, J. Statist. Phys.112 (2003) 523-540. Zbl1124.82311MR1997261
- [12] F. Rezakhanlou, Microscopic structure of shocks in one conservation laws, Ann. Inst. H. Poincaré Anal. Non Lineaire12 (1995) 119-153. Zbl0836.76046MR1326665
- [13] T. Seppäläinen, Perturbation of the equilibrium for a totally asymmetric stick process in one dimension, Ann. Probab.29 (2001) 176-204. Zbl1014.60091MR1825147
- [14] B. Tóth, B. Valkó, Between equilibrium fluctuations and Eulerian scaling. Perturbation of equilibrium for a class of deposition models, J. Statist. Phys.109 (2002) 177-205. Zbl1027.82031MR1927918
- [15] B. Tóth, B. Valkó, Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws, J. Statist. Phys.112 (2003) 497-521. Zbl1124.82312MR1997260
- [16] B. Tóth, B. Valkó, Perturbation of singular equilibria of hyperbolic two-component systems: a universal hydrodynamic limit, Commun. Math. Phys.256 (2005) 111-157. Zbl1088.82019MR2134338
- [17] H.T. Yau, Logarithmic Sobolev inequality for generalized simple exclusion processes, Probability Theory Related Fields109 (1997) 507-538. Zbl0903.60087MR1483598
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.