Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems

Benedek Valkó

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 1, page 61-80
  • ISSN: 0246-0203

How to cite

top

Valkó, Benedek. "Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems." Annales de l'I.H.P. Probabilités et statistiques 42.1 (2006): 61-80. <http://eudml.org/doc/77887>.

@article{Valkó2006,
author = {Valkó, Benedek},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {relative entropy; hyperbolic system of conservation laws},
language = {eng},
number = {1},
pages = {61-80},
publisher = {Elsevier},
title = {Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems},
url = {http://eudml.org/doc/77887},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Valkó, Benedek
TI - Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 1
SP - 61
EP - 80
LA - eng
KW - relative entropy; hyperbolic system of conservation laws
UR - http://eudml.org/doc/77887
ER -

References

top
  1. [1] M. Balázs, Growth fluctuations in interface models, Ann. Inst. H. Poincaré Probab. Statist.39 (2003) 639-685. Zbl1029.60075MR1983174
  2. [2] R.N. Bhattacharya, R. Ranga Rao, Normal Approximation and Asymptotic Expansions, Wiley, 1976. Zbl0331.41023MR436272
  3. [3] C. Cocozza, Processus des misanthropes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete70 (1985) 509-523. Zbl0554.60097MR807334
  4. [4] R.J. DiPerna, A. Majda, The validity of nonlinear geometric optics for weak solutions of conservation laws, Commun. Math. Phys.98 (1985) 313-347. Zbl0582.35081MR788777
  5. [5] R. Esposito, R. Marra, H.T. Yau, Diffusive limit of asymmetric simple exclusion, Rev. Math. Phys.6 (1994) 1233-1267. Zbl0841.60082MR1301374
  6. [6] J. Fritz, B. Tóth, Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas, Commun. Math. Phys.249 (2004) 1-27. Zbl1126.82015MR2077251
  7. [7] J.K. Hunter, J.B. Keller, Weakly nonlinear high frequency waves, Commun. Pure Appl. Math.36 (1983) 547-569. Zbl0547.35070MR716196
  8. [8] C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems, Springer, 1999. Zbl0927.60002MR1707314
  9. [9] C. Landim, S. Sethuraman, S.R.S. Varadhan, Spectral gap for zero range dynamics, Ann. Probab.24 (1986) 1871-1902. Zbl0870.60095MR1415232
  10. [10] S. Olla, S.R.S. Varadhan, H.T. Yau, Hydrodynamical limit for Hamiltonian system with weak noise, Commun. Math. Phys.155 (1993) 523-560. Zbl0781.60101MR1231642
  11. [11] V. Popkov, G.M. Schütz, Shocks and excitation dynamics in driven diffusive two channel systems, J. Statist. Phys.112 (2003) 523-540. Zbl1124.82311MR1997261
  12. [12] F. Rezakhanlou, Microscopic structure of shocks in one conservation laws, Ann. Inst. H. Poincaré Anal. Non Lineaire12 (1995) 119-153. Zbl0836.76046MR1326665
  13. [13] T. Seppäläinen, Perturbation of the equilibrium for a totally asymmetric stick process in one dimension, Ann. Probab.29 (2001) 176-204. Zbl1014.60091MR1825147
  14. [14] B. Tóth, B. Valkó, Between equilibrium fluctuations and Eulerian scaling. Perturbation of equilibrium for a class of deposition models, J. Statist. Phys.109 (2002) 177-205. Zbl1027.82031MR1927918
  15. [15] B. Tóth, B. Valkó, Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws, J. Statist. Phys.112 (2003) 497-521. Zbl1124.82312MR1997260
  16. [16] B. Tóth, B. Valkó, Perturbation of singular equilibria of hyperbolic two-component systems: a universal hydrodynamic limit, Commun. Math. Phys.256 (2005) 111-157. Zbl1088.82019MR2134338
  17. [17] H.T. Yau, Logarithmic Sobolev inequality for generalized simple exclusion processes, Probability Theory Related Fields109 (1997) 507-538. Zbl0903.60087MR1483598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.