Markov chain intersections and the loop-erased walk
Russell Lyons; Yuval Peres; Oded Schramm
Annales de l'I.H.P. Probabilités et statistiques (2003)
- Volume: 39, Issue: 5, page 779-791
- ISSN: 0246-0203
Access Full Article
topHow to cite
topLyons, Russell, Peres, Yuval, and Schramm, Oded. "Markov chain intersections and the loop-erased walk." Annales de l'I.H.P. Probabilités et statistiques 39.5 (2003): 779-791. <http://eudml.org/doc/77780>.
@article{Lyons2003,
author = {Lyons, Russell, Peres, Yuval, Schramm, Oded},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; uniform spanning forests; transient Markov chains; loop-erased-path},
language = {eng},
number = {5},
pages = {779-791},
publisher = {Elsevier},
title = {Markov chain intersections and the loop-erased walk},
url = {http://eudml.org/doc/77780},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Lyons, Russell
AU - Peres, Yuval
AU - Schramm, Oded
TI - Markov chain intersections and the loop-erased walk
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 5
SP - 779
EP - 791
LA - eng
KW - random walk; uniform spanning forests; transient Markov chains; loop-erased-path
UR - http://eudml.org/doc/77780
ER -
References
top- [1] I. Benjamini, R. Lyons, Y. Peres, O. Schramm, Uniform spanning forests, Ann. Probab.29 (2001) 1-65. Zbl1016.60009MR1825141
- [2] D.L. Burkholder, B.J. Davis, R.F. Gundy, Integral inequalities for convex functions of operators on martingales, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley 1970/1971), Vol. II: Probability Theory, University California Press, Berkeley, 1972, pp. 223-240. Zbl0253.60056MR400380
- [3] P. Erdős, S.J. Taylor, Some intersection properties of random walk paths, Acta Math. Acad. Sci. Hungar.11 (1960) 231-248. Zbl0096.33302MR126299
- [4] P.J. Fitzsimmons, T. Salisbury, Capacity and energy for multiparameter Markov processes, Ann. Inst. H. Poincaré Probab. Statist.25 (1989) 325-350. Zbl0689.60071MR1023955
- [5] O. Häggström, Random-cluster measures and uniform spanning trees, Stochastic Process. Appl.59 (1995) 267-275. Zbl0840.60089MR1357655
- [6] N. James, Ph.D. Thesis, University of California, Berkeley, 1996.
- [7] N. James, Y. Peres, Cutpoints and exchangeable events for random walks, Teor. Veroyatnost. i Primenen.41 (1996) 854-868, Reproduced in , Theory Probab. Appl.41 (1997) 666-677. Zbl0896.60035MR1687097
- [8] J.-P. Kahane, Some Random Series of Functions, Cambridge University Press, Cambridge, 1985. Zbl0571.60002MR833073
- [9] G. Lawler, Intersections of Random Walks, Birkhäuser, Boston, 1991. Zbl0925.60078MR1117680
- [10] G. Lawler, Loop-erased walks intersect infinitely often in four dimensions, Electron. Comm. Probab.3 (1998) 35-42. Zbl0907.60063MR1637969
- [11] J.-F. Le Gall, J. Rosen, The range of stable random walks, Ann. Probab.19 (1991) 650-705. Zbl0729.60066MR1106281
- [12] R. Pemantle, Choosing a spanning tree for the integer lattice uniformly, Ann. Probab.19 (1991) 1559-1574. Zbl0758.60010MR1127715
- [13] T. Salisbury, Energy, and intersections of Markov chains, in: Aldous D., Pemantle R. (Eds.), Random Discrete Structures, The IMA Volumes in Mathematics and its Applications, 76, Springer-Verlag, New York, 1996, pp. 213-225. Zbl0845.60068MR1395618
- [14] D.B. Wilson, Generating random spanning trees more quickly than the cover time, in: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), ACM, New York, 1996, pp. 296-303. Zbl0946.60070MR1427525
- [15] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., 138, Cambridge University Press, Cambridge, 2000. Zbl0951.60002MR1743100
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.