Markov chain intersections and the loop-erased walk

Russell Lyons; Yuval Peres; Oded Schramm

Annales de l'I.H.P. Probabilités et statistiques (2003)

  • Volume: 39, Issue: 5, page 779-791
  • ISSN: 0246-0203

How to cite

top

Lyons, Russell, Peres, Yuval, and Schramm, Oded. "Markov chain intersections and the loop-erased walk." Annales de l'I.H.P. Probabilités et statistiques 39.5 (2003): 779-791. <http://eudml.org/doc/77780>.

@article{Lyons2003,
author = {Lyons, Russell, Peres, Yuval, Schramm, Oded},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; uniform spanning forests; transient Markov chains; loop-erased-path},
language = {eng},
number = {5},
pages = {779-791},
publisher = {Elsevier},
title = {Markov chain intersections and the loop-erased walk},
url = {http://eudml.org/doc/77780},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Lyons, Russell
AU - Peres, Yuval
AU - Schramm, Oded
TI - Markov chain intersections and the loop-erased walk
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2003
PB - Elsevier
VL - 39
IS - 5
SP - 779
EP - 791
LA - eng
KW - random walk; uniform spanning forests; transient Markov chains; loop-erased-path
UR - http://eudml.org/doc/77780
ER -

References

top
  1. [1] I. Benjamini, R. Lyons, Y. Peres, O. Schramm, Uniform spanning forests, Ann. Probab.29 (2001) 1-65. Zbl1016.60009MR1825141
  2. [2] D.L. Burkholder, B.J. Davis, R.F. Gundy, Integral inequalities for convex functions of operators on martingales, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley 1970/1971), Vol. II: Probability Theory, University California Press, Berkeley, 1972, pp. 223-240. Zbl0253.60056MR400380
  3. [3] P. Erdo&#x030B;s, S.J. Taylor, Some intersection properties of random walk paths, Acta Math. Acad. Sci. Hungar.11 (1960) 231-248. Zbl0096.33302MR126299
  4. [4] P.J. Fitzsimmons, T. Salisbury, Capacity and energy for multiparameter Markov processes, Ann. Inst. H. Poincaré Probab. Statist.25 (1989) 325-350. Zbl0689.60071MR1023955
  5. [5] O. Häggström, Random-cluster measures and uniform spanning trees, Stochastic Process. Appl.59 (1995) 267-275. Zbl0840.60089MR1357655
  6. [6] N. James, Ph.D. Thesis, University of California, Berkeley, 1996. 
  7. [7] N. James, Y. Peres, Cutpoints and exchangeable events for random walks, Teor. Veroyatnost. i Primenen.41 (1996) 854-868, Reproduced in , Theory Probab. Appl.41 (1997) 666-677. Zbl0896.60035MR1687097
  8. [8] J.-P. Kahane, Some Random Series of Functions, Cambridge University Press, Cambridge, 1985. Zbl0571.60002MR833073
  9. [9] G. Lawler, Intersections of Random Walks, Birkhäuser, Boston, 1991. Zbl0925.60078MR1117680
  10. [10] G. Lawler, Loop-erased walks intersect infinitely often in four dimensions, Electron. Comm. Probab.3 (1998) 35-42. Zbl0907.60063MR1637969
  11. [11] J.-F. Le Gall, J. Rosen, The range of stable random walks, Ann. Probab.19 (1991) 650-705. Zbl0729.60066MR1106281
  12. [12] R. Pemantle, Choosing a spanning tree for the integer lattice uniformly, Ann. Probab.19 (1991) 1559-1574. Zbl0758.60010MR1127715
  13. [13] T. Salisbury, Energy, and intersections of Markov chains, in: Aldous D., Pemantle R. (Eds.), Random Discrete Structures, The IMA Volumes in Mathematics and its Applications, 76, Springer-Verlag, New York, 1996, pp. 213-225. Zbl0845.60068MR1395618
  14. [14] D.B. Wilson, Generating random spanning trees more quickly than the cover time, in: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), ACM, New York, 1996, pp. 296-303. Zbl0946.60070MR1427525
  15. [15] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., 138, Cambridge University Press, Cambridge, 2000. Zbl0951.60002MR1743100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.