Limit theorems for one-dimensional transient random walks in Markov environments
Eddy Mayer-Wolf, Alexander Roitershtein, Ofer Zeitouni (2004)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Eddy Mayer-Wolf, Alexander Roitershtein, Ofer Zeitouni (2004)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Nina Gantert, Yuval Peres, Zhan Shi (2010)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We consider a one-dimensional recurrent random walk in random environment (RWRE). We show that the – suitably centered – empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a random walk in an infinite valley. The construction of the infinite valley goes back to Golosov, see (1984) 491–506. As a consequence, we show weak convergence for both the maximal local time and the self-intersection local time...
Alexei Borodin (2008)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an application, we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal processes with Bernoulli noise.
P. Collet, A. Galves, B. Schmitt (1992)
Annales de l'I.H.P. Physique théorique
Similarity:
Dayue Chen (1997)
Annales de l'I.H.P. Probabilités et statistiques
Similarity: