Glauber dynamics of continuous particle systems

Yuri Kondratiev; Eugene Lytvynov

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 4, page 685-702
  • ISSN: 0246-0203

How to cite

top

Kondratiev, Yuri, and Lytvynov, Eugene. "Glauber dynamics of continuous particle systems." Annales de l'I.H.P. Probabilités et statistiques 41.4 (2005): 685-702. <http://eudml.org/doc/77862>.

@article{Kondratiev2005,
author = {Kondratiev, Yuri, Lytvynov, Eugene},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {birth and death process; Gibbs measure; spectral gap},
language = {eng},
number = {4},
pages = {685-702},
publisher = {Elsevier},
title = {Glauber dynamics of continuous particle systems},
url = {http://eudml.org/doc/77862},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Kondratiev, Yuri
AU - Lytvynov, Eugene
TI - Glauber dynamics of continuous particle systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 4
SP - 685
EP - 702
LA - eng
KW - birth and death process; Gibbs measure; spectral gap
UR - http://eudml.org/doc/77862
ER -

References

top
  1. [1] S. Alberverio, Yu.G. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces, J. Funct. Anal.154 (1998) 444-500. Zbl0914.58028MR1612725
  2. [2] S. Alberverio, Yu.G. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces. The Gibbsian case, J. Funct. Anal.157 (1998) 242-291. Zbl0931.58019MR1637949
  3. [3] S. Albeverio, M. Röckner, Dirichlet form methods for uniqueness of martigale problems and applications, in: Cranston M.C., Pinsky M.A. (Eds.), Stochastic Analysis, Proceedings of Symposia in Pure Mathematics, vol. 57, Amer. Math. Soc., 1995, pp. 513-528. Zbl0824.31005MR1335494
  4. [4] Yu.M. Berezansky, Yu.G. Kondratiev, Spectral Methods in Infinite Dimensional Analysis, Kluwer Academic, Dordrecht, 1994. Zbl0832.47001
  5. [5] Yu.M. Berezansky, Yu.G. Kondratiev, T. Kuna, E. Lytvynov, On a spectral representation for correlation measures in configuration space analysis, Methods Funct. Anal. Topol.5 (4) (1999) 87-100. Zbl0955.60050MR1773905
  6. [6] L. Bertini, N. Cancrini, F. Cesi, The spectral gap for a Glauber-type dynamics in a continuous gas, Ann. Inst. H. Poincaré Probab. Statist.38 (2002) 91-108. Zbl0994.82054MR1899231
  7. [7] M. Fukushima, Dirichlet Forms and Symmetric Markov Processes, North-Holland, Amsterdam, 1980. 
  8. [8] R.A. Holley, D.W. Stroock, Nearest neighbor birth and death processes on the real line, Acta Math.140 (1987) 103-154. Zbl0405.60090MR488380
  9. [9] O. Kallenberg, Random Measures, Academic Press, 1975. Zbl0345.60032MR431373
  10. [10] Yu.G. Kondratiev, Dirichlet operators and the smoothness of solutions of infinite-dimensional elliptic equations, Dokl. Akad. Nauk SSSR282 (1985) 269-273, (in Russian). Zbl0622.47050MR788994
  11. [11] Yu.G. Kondratiev, T. Kuna, Harmonic analysis on configuration spaces I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top.5 (2002) 201-233. Zbl1134.82308MR1914839
  12. [12] T. Kuna, Studies in configuration space analysis and applications, PhD Thesis, Bonn University, 1999. Zbl0960.60101MR1932768
  13. [13] T. Kuna, Properties of marked Gibbs measures in high temperature regime, Methods Funct. Anal. Topol.7 (3) (2001) 33-53. Zbl0984.82017MR1886464
  14. [14] Z.-M. Ma, M. Röckner, An Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, 1992. Zbl0826.31001
  15. [15] Z.-M. Ma, M. Röckner, Construction of diffusions on configuration spaces, Osaka J. Math.37 (2000) 273-314. Zbl0968.58028MR1772834
  16. [16] X.X. Nguyen, H. Zessin, Integral and differentiable characterizations of the Gibbs process, Math. Nachr.88 (1979) 105-115. Zbl0444.60040MR543396
  17. [17] C. Preston, Spatial birth-and-death processes, in: Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), vol. 2, Bull. Inst. Internat. Statist., vol. 46, 1975, pp. 371-391. Zbl0379.60082MR474532
  18. [18] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. 2. Fourier Analysis, Self-Adjointness, Academic Press, 1972. Zbl0308.47002MR493419
  19. [19] M. Röckner, B. Schmuland, A support property for infinite-dimensional interacting diffusion processes, C. R. Acad. Sci. Paris, Sér. I326 (1998) 359-364. Zbl0914.60059MR1648485
  20. [20] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamins, 1969. Zbl0177.57301MR289084
  21. [21] D. Ruelle, Superstable interaction in classical statistical mechanics, Comm. Math. Phys.18 (1970) 127-159. Zbl0198.31101MR266565
  22. [22] D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semigroups, Probab. Math. Statist.3 (1984) 217-239. Zbl0548.60058MR764148
  23. [23] D. Surgailis, On Poisson multiple stochastic integrals and associated equilibrium Markov processes, in: Theory and Application of Random Fields (Bangalore, 1982), Lecture Notes in Control and Inform. Sci., vol. 49, Springer, 1983, pp. 233-248. Zbl0511.60047MR799947
  24. [24] L. Wu, Estimate of spectral gap for continuous gas, preprint, 2003. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.