Glauber dynamics of continuous particle systems
Yuri Kondratiev; Eugene Lytvynov
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 4, page 685-702
- ISSN: 0246-0203
Access Full Article
topHow to cite
topKondratiev, Yuri, and Lytvynov, Eugene. "Glauber dynamics of continuous particle systems." Annales de l'I.H.P. Probabilités et statistiques 41.4 (2005): 685-702. <http://eudml.org/doc/77862>.
@article{Kondratiev2005,
author = {Kondratiev, Yuri, Lytvynov, Eugene},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {birth and death process; Gibbs measure; spectral gap},
language = {eng},
number = {4},
pages = {685-702},
publisher = {Elsevier},
title = {Glauber dynamics of continuous particle systems},
url = {http://eudml.org/doc/77862},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Kondratiev, Yuri
AU - Lytvynov, Eugene
TI - Glauber dynamics of continuous particle systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 4
SP - 685
EP - 702
LA - eng
KW - birth and death process; Gibbs measure; spectral gap
UR - http://eudml.org/doc/77862
ER -
References
top- [1] S. Alberverio, Yu.G. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces, J. Funct. Anal.154 (1998) 444-500. Zbl0914.58028MR1612725
- [2] S. Alberverio, Yu.G. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces. The Gibbsian case, J. Funct. Anal.157 (1998) 242-291. Zbl0931.58019MR1637949
- [3] S. Albeverio, M. Röckner, Dirichlet form methods for uniqueness of martigale problems and applications, in: Cranston M.C., Pinsky M.A. (Eds.), Stochastic Analysis, Proceedings of Symposia in Pure Mathematics, vol. 57, Amer. Math. Soc., 1995, pp. 513-528. Zbl0824.31005MR1335494
- [4] Yu.M. Berezansky, Yu.G. Kondratiev, Spectral Methods in Infinite Dimensional Analysis, Kluwer Academic, Dordrecht, 1994. Zbl0832.47001
- [5] Yu.M. Berezansky, Yu.G. Kondratiev, T. Kuna, E. Lytvynov, On a spectral representation for correlation measures in configuration space analysis, Methods Funct. Anal. Topol.5 (4) (1999) 87-100. Zbl0955.60050MR1773905
- [6] L. Bertini, N. Cancrini, F. Cesi, The spectral gap for a Glauber-type dynamics in a continuous gas, Ann. Inst. H. Poincaré Probab. Statist.38 (2002) 91-108. Zbl0994.82054MR1899231
- [7] M. Fukushima, Dirichlet Forms and Symmetric Markov Processes, North-Holland, Amsterdam, 1980.
- [8] R.A. Holley, D.W. Stroock, Nearest neighbor birth and death processes on the real line, Acta Math.140 (1987) 103-154. Zbl0405.60090MR488380
- [9] O. Kallenberg, Random Measures, Academic Press, 1975. Zbl0345.60032MR431373
- [10] Yu.G. Kondratiev, Dirichlet operators and the smoothness of solutions of infinite-dimensional elliptic equations, Dokl. Akad. Nauk SSSR282 (1985) 269-273, (in Russian). Zbl0622.47050MR788994
- [11] Yu.G. Kondratiev, T. Kuna, Harmonic analysis on configuration spaces I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top.5 (2002) 201-233. Zbl1134.82308MR1914839
- [12] T. Kuna, Studies in configuration space analysis and applications, PhD Thesis, Bonn University, 1999. Zbl0960.60101MR1932768
- [13] T. Kuna, Properties of marked Gibbs measures in high temperature regime, Methods Funct. Anal. Topol.7 (3) (2001) 33-53. Zbl0984.82017MR1886464
- [14] Z.-M. Ma, M. Röckner, An Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Springer-Verlag, 1992. Zbl0826.31001
- [15] Z.-M. Ma, M. Röckner, Construction of diffusions on configuration spaces, Osaka J. Math.37 (2000) 273-314. Zbl0968.58028MR1772834
- [16] X.X. Nguyen, H. Zessin, Integral and differentiable characterizations of the Gibbs process, Math. Nachr.88 (1979) 105-115. Zbl0444.60040MR543396
- [17] C. Preston, Spatial birth-and-death processes, in: Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), vol. 2, Bull. Inst. Internat. Statist., vol. 46, 1975, pp. 371-391. Zbl0379.60082MR474532
- [18] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. 2. Fourier Analysis, Self-Adjointness, Academic Press, 1972. Zbl0308.47002MR493419
- [19] M. Röckner, B. Schmuland, A support property for infinite-dimensional interacting diffusion processes, C. R. Acad. Sci. Paris, Sér. I326 (1998) 359-364. Zbl0914.60059MR1648485
- [20] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamins, 1969. Zbl0177.57301MR289084
- [21] D. Ruelle, Superstable interaction in classical statistical mechanics, Comm. Math. Phys.18 (1970) 127-159. Zbl0198.31101MR266565
- [22] D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semigroups, Probab. Math. Statist.3 (1984) 217-239. Zbl0548.60058MR764148
- [23] D. Surgailis, On Poisson multiple stochastic integrals and associated equilibrium Markov processes, in: Theory and Application of Random Fields (Bangalore, 1982), Lecture Notes in Control and Inform. Sci., vol. 49, Springer, 1983, pp. 233-248. Zbl0511.60047MR799947
- [24] L. Wu, Estimate of spectral gap for continuous gas, preprint, 2003.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.