The continuum reaction-diffusion limit of a stochastic cellular growth model
Stephan Luckhaus; Livio Triolo
- Volume: 15, Issue: 3-4, page 215-223
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topLuckhaus, Stephan, and Triolo, Livio. "The continuum reaction-diffusion limit of a stochastic cellular growth model." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 215-223. <http://eudml.org/doc/252410>.
@article{Luckhaus2004,
abstract = {A competition-diffusion system, where populations of healthy and malignant cells compete and move on a neutral matrix, is analyzed. A coupled system of degenerate nonlinear parabolic equations is derived through a scaling procedure from the microscopic, Markovian dynamics. The healthy cells move much slower than the malignant ones, such that no diffusion for their density survives in the limit. The malignant cells may locally accumulate, while for the healthy ones an exclusion rule is considered. The asymptotic behavior of the system can be partially described through the analysis of the stationary wave which connects different equilibria.},
author = {Luckhaus, Stephan, Triolo, Livio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Tumor growth model; Hydrodynamic limits; Degenerate Reaction-Diffusion system},
language = {eng},
month = {12},
number = {3-4},
pages = {215-223},
publisher = {Accademia Nazionale dei Lincei},
title = {The continuum reaction-diffusion limit of a stochastic cellular growth model},
url = {http://eudml.org/doc/252410},
volume = {15},
year = {2004},
}
TY - JOUR
AU - Luckhaus, Stephan
AU - Triolo, Livio
TI - The continuum reaction-diffusion limit of a stochastic cellular growth model
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 215
EP - 223
AB - A competition-diffusion system, where populations of healthy and malignant cells compete and move on a neutral matrix, is analyzed. A coupled system of degenerate nonlinear parabolic equations is derived through a scaling procedure from the microscopic, Markovian dynamics. The healthy cells move much slower than the malignant ones, such that no diffusion for their density survives in the limit. The malignant cells may locally accumulate, while for the healthy ones an exclusion rule is considered. The asymptotic behavior of the system can be partially described through the analysis of the stationary wave which connects different equilibria.
LA - eng
KW - Tumor growth model; Hydrodynamic limits; Degenerate Reaction-Diffusion system
UR - http://eudml.org/doc/252410
ER -
References
top- CHEN, M.F., From Markov Chains to Non-equilibrium Particle Systems. World Scientific, Singapore1992. Zbl0753.60055MR2091955DOI10.1142/9789812562456
- DE MASI, A. - PRESUTTI, E., Mathematical methods for hydrodynamical limits. Lecture Notes in Mathematics, 1501, Springer-Verlag, Berlin-Heidelberg-New York1991. Zbl0754.60122MR1175626
- DUNBAR, S., Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in . Trans. Am. Math. Soc., 286, 1984, 557-594. Zbl0556.35078MR760975DOI10.2307/1999810
- DURRETT, R. - LEVIN, S., The importance of being discrete (and spatial). Theor. Population Biol., 46, 1994, 363-394. Zbl0846.92027
- DURRETT, R. - NEUHAUSER, C., Particle systems and reaction diffusion equations. Ann. Probab., 22, 1994, 289-333. Zbl0799.60093MR1258879
- FIFE, P., Mathematical aspects of reacting and diffusing systems. Lectures Notes in Biomath., 28, Springer-Verlag, Berlin-Heidelberg-New York1978. Zbl0403.92004MR527914
- GATENBY, R.A. - GAWLINSKI, E.T., A reaction-diffusion model of cancer invasion. Cancer Res., 56, 1996, 5745-5753.
- GOBRON, T. - SAADA, E. - TRIOLO, L., The competition-diffusion limit of a stochastic growth model. Math. and Comp. Modelling, 37, 2003, 1153-1161. Zbl1046.92027
- KENNEDY, C.R. - ARIS, R., Traveling waves in a simple population model involving growth and death. Bull. Math. Biol., 42, 1980, 397-429. Zbl0431.92021MR661329DOI10.1016/S0092-8240(80)80057-7
- KIPNIS, C. - LANDIM, C., Scaling limits for interacting particle systems. Springer-Verlag, Berlin-Heidelberg-New York1999. Zbl0927.60002MR1707314
- KLAASEN, G.A. - TROY, W.C., The stability of traveling wave front solutions of a reaction-diffusion system. SIAM J. Appl. Math., 41, 1981, 145-167. Zbl0467.35011MR622879DOI10.1137/0141011
- LIGGETT, T.M., Interacting Particle Systems. Springer-Verlag, Berlin-Heidelberg-New York1985. Zbl1103.82016MR776231DOI10.1007/978-1-4613-8542-4
- MARCHANT, B.P. - NORBURY, J. - PERUMPANANI, A.J., Traveling shock waves arising in a model of malignant invasion. SIAM J. Appl. Math., 60, 2000, 463-476. Zbl0944.34021MR1740255DOI10.1137/S0036139998328034
- PERRUT, A., Hydrodynamic limits for a two-species reaction-diffusion process. Annals of Appl. Probab., 10, 2000, 163-191. Zbl1171.60394MR1765207DOI10.1214/aoap/1019737668
- PERUMPANANI, A.J. - SHERRATT, J.A. - NORBURY, J. - BYRNE, H.M., A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Physica D, 126, 1999, 145-159. Zbl1001.92523
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.