Random walk on graphs with regular resistance and volume growth

András Telcs

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 1, page 143-169
  • ISSN: 0246-0203

Abstract

top
In this paper characterizations of graphs satisfying heat kernel estimates for a wide class of space–time scaling functions are given. The equivalence of the two-sided heat kernel estimate and the parabolic Harnack inequality is also shown via the equivalence of the upper (lower) heat kernel estimate to the parabolic mean value (and super mean value) inequality.

How to cite

top

Telcs, András. "Random walk on graphs with regular resistance and volume growth." Annales de l'I.H.P. Probabilités et statistiques 44.1 (2008): 143-169. <http://eudml.org/doc/77959>.

@article{Telcs2008,
abstract = {In this paper characterizations of graphs satisfying heat kernel estimates for a wide class of space–time scaling functions are given. The equivalence of the two-sided heat kernel estimate and the parabolic Harnack inequality is also shown via the equivalence of the upper (lower) heat kernel estimate to the parabolic mean value (and super mean value) inequality.},
author = {Telcs, András},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; heat kernel; parabolic inequalities; Random walk; parabolic inequality},
language = {eng},
number = {1},
pages = {143-169},
publisher = {Gauthier-Villars},
title = {Random walk on graphs with regular resistance and volume growth},
url = {http://eudml.org/doc/77959},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Telcs, András
TI - Random walk on graphs with regular resistance and volume growth
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 1
SP - 143
EP - 169
AB - In this paper characterizations of graphs satisfying heat kernel estimates for a wide class of space–time scaling functions are given. The equivalence of the two-sided heat kernel estimate and the parabolic Harnack inequality is also shown via the equivalence of the upper (lower) heat kernel estimate to the parabolic mean value (and super mean value) inequality.
LA - eng
KW - random walk; heat kernel; parabolic inequalities; Random walk; parabolic inequality
UR - http://eudml.org/doc/77959
ER -

References

top
  1. D. G. Aronson. Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci (3) 22 (1968) 607–694; Addendum 25 (1971) 221–228. Zbl0223.35046MR435594
  2. M. T. Barlow. Diffusion on fractals. Lectures on Probability Theory and Statistics, Ecole d’été de probabilités de Saint-Flour XXV -1995, pp. 1–121. Lecture Notes in Math. 1690. Springer, Berlin, 1998. Zbl0916.60069MR1668115
  3. M. T. Barlow. Some remarks on the elliptic Harnack inequality. Bull. Lond. Math. Soc. 37 (2005) 200–208. Zbl1067.31002MR2119019
  4. M. T. Barlow and R. Bass. Stability of the parabolic Harnack inequalities. Trans. Amer. Math. Soc. 356 (2003) 1501–1533. Zbl1034.60070MR2034316
  5. M. T. Barlow, R. Bass and T. Kumagai. Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan. 58 (2006) 485–519. Zbl1102.60064MR2228569
  6. M. Barlow, T. Coulhon and A. Grigor’yan. Manifolds and graphs with slow heat kernel decay. Invent. Math. 144 (2001) 609–649. Zbl1003.58025MR1833895
  7. M. T. Barlow, T. Coulhon and T. Kumagai. Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Comm. Pure Appl. Math. 58 (2005) 1642–1677. Zbl1083.60060MR2177164
  8. T. Coulhon and A. Grigor’yan. Random walks on graphs with regular volume growth. Geom. Funct. Anal. 8 (1998) 656–701. Zbl0918.60053MR1633979
  9. E. B. Davies. Heat Kernels and Spectral Theory. Cambridge University Press, 1989. Zbl0699.35006MR990239
  10. T. Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 1 (1999) 181–232. Zbl0922.60060MR1681641
  11. T. Delmotte. Graphs between the elliptic and parabolic Harnack inequalities. Potential Anal. 16 (2002) 151–168. Zbl1081.39012MR1881595
  12. E. B. Fabes and D. W. Stroock. A new proof of Moser’s parabolic Harnack inequality using an old idea of Nash. Arch. Rational Mech. Anal. 96 (1986) 327–338. Zbl0652.35052MR855753
  13. A. Grigor’yan. Heat equation on a non-compact Riemannian manifold. Math. USSR Sb. 72 (1992) 47–77. Zbl0776.58035
  14. A. Grigor’yan. Heat kernel upper bounds on fractal spaces. Unpublished manuscript. 
  15. A. Grigor’yan and A. Telcs. Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J. 109 (2001) 452–510. Zbl1010.35016MR1853353
  16. A. Grigor’yan and A. Telcs. Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann. 324 (2002) 521–556. Zbl1011.60021MR1938457
  17. A. Grigor’yan and A. Telcs. Heat kernel estimates in measure metric spaces. Unpublished manuscript. 
  18. M. Gromov. Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53 (1981) 57–73. Zbl0474.20018MR623534
  19. B. Hambly and T. Kumagai. Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries. In Proc. of Symposia in Pure Math. 72. Part 2, pp. 233–260. Amer. Math. Soc., Providence, RI, 2004. Zbl1065.60041MR2112125
  20. M. Hino and J. A. Ramírez. Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Probab. 31 (2003) 1254–1295. Zbl1085.31008MR1988472
  21. W. Hebisch and L. Saloff-Coste. On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier 51 (2001) 1437–1481. Zbl0988.58007MR1860672
  22. O. D. Jones. Transition probabilities for the simple random walk on the Sierpinski graph. Stochastic Process Appl. 61 (1996) 45–69. Zbl0853.60058MR1378848
  23. T. Kumagai and K.-T. Sturm. Construction of diffusion processes on fractals, d-sets, and general metric measure spaces, J. Math. Kyoto Univ. 45 (2005) 307–327. Zbl1086.60052MR2161694
  24. P. Li and J. Wang. Mean value inequalities. Indiana Univ. Math. J. 48 (1999) 1257–1283. Zbl1003.58026MR1757075
  25. P. Li and S.-T. Yau. On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986) 153–201. Zbl0611.58045MR834612
  26. J. Moser. On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 16 (1964) 101–134. Zbl0149.06902MR159139
  27. J. Moser. On Harnack’s theorem for parabolic differential equations. Comm. Pure Appl. Math. 24 (1971) 727–740. Zbl0227.35016MR288405
  28. J. R. Norris. Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds. Acta Math. 179 (1997) 79–103. Zbl0912.58041MR1484769
  29. C. Sabot. Existence and uniqueness of diffusions on finitely ramified self-similar fractals. Ann. Sci. École Norm. Sup (4) 30 (1997) 605–673. Zbl0924.60064MR1474807
  30. L. Saloff-Coste. A note on Poincaré, Sobolev and Harnack inequalities. Internat. Math. Res. 2 (1992) 27–38. Zbl0769.58054MR1150597
  31. C.-J. Sung. Parabolic super mean value inequality. Proc. Amer. Math. Soc. 130 (2002) 3401–3408. Zbl1010.58021MR1913020
  32. R. S. Strichartz. Fractafolds based on the Sierpinski gasket and their spectra. Trans. Amer. Math. Soc. 355 (2003) 4019–4043. Zbl1041.28006MR1990573
  33. K.-T. Sturm. Analysis on local Dirichlet spaces III. The parabolic Harnack inequality. J. Math. Pures Appl. (9) 75 (1996) 273–297. Zbl0854.35016MR1387522
  34. A. Telcs. Volume and time doubling of graphs and random walk, the strongly recurrent case. Comm. Pure Appl. Math. (2001) 975–1018. Zbl1021.60037MR1829530
  35. A. Telcs. Some notes on the Einstein relation. J. Stat. Phys. 122 (2006) 617–645. Zbl1149.82025MR2213945
  36. A. Telcs. Random walks on graphs with volume and time doubling. Revista Mat. Iberoamericana 22 (2006) 17–54. Zbl1118.60062MR2267312
  37. A. Telcs. The Art of Random Walks. Springer, Berlin, 2006. Zbl1104.60003MR2240535
  38. S. R. S. Varadhan. On the behavior of the fundamental solution of the heat equation with variable coefficients. Comm. Pure Appl. Math. 20 (1967) 431–455. Zbl0155.16503MR208191

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.