Random walk on graphs with regular resistance and volume growth
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 1, page 143-169
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. G. Aronson. Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci (3) 22 (1968) 607–694; Addendum 25 (1971) 221–228. Zbl0223.35046MR435594
- M. T. Barlow. Diffusion on fractals. Lectures on Probability Theory and Statistics, Ecole d’été de probabilités de Saint-Flour XXV -1995, pp. 1–121. Lecture Notes in Math. 1690. Springer, Berlin, 1998. Zbl0916.60069MR1668115
- M. T. Barlow. Some remarks on the elliptic Harnack inequality. Bull. Lond. Math. Soc. 37 (2005) 200–208. Zbl1067.31002MR2119019
- M. T. Barlow and R. Bass. Stability of the parabolic Harnack inequalities. Trans. Amer. Math. Soc. 356 (2003) 1501–1533. Zbl1034.60070MR2034316
- M. T. Barlow, R. Bass and T. Kumagai. Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan. 58 (2006) 485–519. Zbl1102.60064MR2228569
- M. Barlow, T. Coulhon and A. Grigor’yan. Manifolds and graphs with slow heat kernel decay. Invent. Math. 144 (2001) 609–649. Zbl1003.58025MR1833895
- M. T. Barlow, T. Coulhon and T. Kumagai. Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Comm. Pure Appl. Math. 58 (2005) 1642–1677. Zbl1083.60060MR2177164
- T. Coulhon and A. Grigor’yan. Random walks on graphs with regular volume growth. Geom. Funct. Anal. 8 (1998) 656–701. Zbl0918.60053MR1633979
- E. B. Davies. Heat Kernels and Spectral Theory. Cambridge University Press, 1989. Zbl0699.35006MR990239
- T. Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 1 (1999) 181–232. Zbl0922.60060MR1681641
- T. Delmotte. Graphs between the elliptic and parabolic Harnack inequalities. Potential Anal. 16 (2002) 151–168. Zbl1081.39012MR1881595
- E. B. Fabes and D. W. Stroock. A new proof of Moser’s parabolic Harnack inequality using an old idea of Nash. Arch. Rational Mech. Anal. 96 (1986) 327–338. Zbl0652.35052MR855753
- A. Grigor’yan. Heat equation on a non-compact Riemannian manifold. Math. USSR Sb. 72 (1992) 47–77. Zbl0776.58035
- A. Grigor’yan. Heat kernel upper bounds on fractal spaces. Unpublished manuscript.
- A. Grigor’yan and A. Telcs. Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J. 109 (2001) 452–510. Zbl1010.35016MR1853353
- A. Grigor’yan and A. Telcs. Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann. 324 (2002) 521–556. Zbl1011.60021MR1938457
- A. Grigor’yan and A. Telcs. Heat kernel estimates in measure metric spaces. Unpublished manuscript.
- M. Gromov. Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53 (1981) 57–73. Zbl0474.20018MR623534
- B. Hambly and T. Kumagai. Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries. In Proc. of Symposia in Pure Math. 72. Part 2, pp. 233–260. Amer. Math. Soc., Providence, RI, 2004. Zbl1065.60041MR2112125
- M. Hino and J. A. Ramírez. Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Probab. 31 (2003) 1254–1295. Zbl1085.31008MR1988472
- W. Hebisch and L. Saloff-Coste. On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier 51 (2001) 1437–1481. Zbl0988.58007MR1860672
- O. D. Jones. Transition probabilities for the simple random walk on the Sierpinski graph. Stochastic Process Appl. 61 (1996) 45–69. Zbl0853.60058MR1378848
- T. Kumagai and K.-T. Sturm. Construction of diffusion processes on fractals, d-sets, and general metric measure spaces, J. Math. Kyoto Univ. 45 (2005) 307–327. Zbl1086.60052MR2161694
- P. Li and J. Wang. Mean value inequalities. Indiana Univ. Math. J. 48 (1999) 1257–1283. Zbl1003.58026MR1757075
- P. Li and S.-T. Yau. On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986) 153–201. Zbl0611.58045MR834612
- J. Moser. On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 16 (1964) 101–134. Zbl0149.06902MR159139
- J. Moser. On Harnack’s theorem for parabolic differential equations. Comm. Pure Appl. Math. 24 (1971) 727–740. Zbl0227.35016MR288405
- J. R. Norris. Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds. Acta Math. 179 (1997) 79–103. Zbl0912.58041MR1484769
- C. Sabot. Existence and uniqueness of diffusions on finitely ramified self-similar fractals. Ann. Sci. École Norm. Sup (4) 30 (1997) 605–673. Zbl0924.60064MR1474807
- L. Saloff-Coste. A note on Poincaré, Sobolev and Harnack inequalities. Internat. Math. Res. 2 (1992) 27–38. Zbl0769.58054MR1150597
- C.-J. Sung. Parabolic super mean value inequality. Proc. Amer. Math. Soc. 130 (2002) 3401–3408. Zbl1010.58021MR1913020
- R. S. Strichartz. Fractafolds based on the Sierpinski gasket and their spectra. Trans. Amer. Math. Soc. 355 (2003) 4019–4043. Zbl1041.28006MR1990573
- K.-T. Sturm. Analysis on local Dirichlet spaces III. The parabolic Harnack inequality. J. Math. Pures Appl. (9) 75 (1996) 273–297. Zbl0854.35016MR1387522
- A. Telcs. Volume and time doubling of graphs and random walk, the strongly recurrent case. Comm. Pure Appl. Math. (2001) 975–1018. Zbl1021.60037MR1829530
- A. Telcs. Some notes on the Einstein relation. J. Stat. Phys. 122 (2006) 617–645. Zbl1149.82025MR2213945
- A. Telcs. Random walks on graphs with volume and time doubling. Revista Mat. Iberoamericana 22 (2006) 17–54. Zbl1118.60062MR2267312
- A. Telcs. The Art of Random Walks. Springer, Berlin, 2006. Zbl1104.60003MR2240535
- S. R. S. Varadhan. On the behavior of the fundamental solution of the heat equation with variable coefficients. Comm. Pure Appl. Math. 20 (1967) 431–455. Zbl0155.16503MR208191