Asymptotic Feynman–Kac formulae for large symmetrised systems of random walks
Annales de l'I.H.P. Probabilités et statistiques (2008)
- Volume: 44, Issue: 5, page 837-875
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAdams, Stefan, and Dorlas, Tony. "Asymptotic Feynman–Kac formulae for large symmetrised systems of random walks." Annales de l'I.H.P. Probabilités et statistiques 44.5 (2008): 837-875. <http://eudml.org/doc/77994>.
@article{Adams2008,
abstract = {We study large deviations principles for N random processes on the lattice ℤd with finite time horizon [0, β] under a symmetrised measure where all initial and terminal points are uniformly averaged over random permutations. That is, given a permutation σ of N elements and a vector (x1, …, xN) of N initial points we let the random processes terminate in the points (xσ(1), …, xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. We prove level-two large deviations principles for the mean of empirical path measures, for the mean of paths and for the mean of occupation local times under this symmetrised measure. The symmetrised measure cannot be written as a product of single random process distributions. We show a couple of important applications of these results in quantum statistical mechanics using the Feynman–Kac formulae representing traces of certain trace class operators. In particular we prove a non-commutative Varadhan lemma for quantum spin systems with Bose–Einstein statistics and mean field interactions. A special case of our large deviations principle for the mean of occupation local times of N simple random walks has the Donsker–Varadhan rate function as the rate function for the limit N→∞ but for finite time β. We give an interpretation in quantum statistical mechanics for this surprising result.},
author = {Adams, Stefan, Dorlas, Tony},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {large deviations; large systems of random processes with symmetrised initial-terminal conditions; Feynman–Kac formula; Bose–Einstein statistics; non-commutative Varadhan lemma; quantum spin systems; Donsker–Varadhan function; Feynman-Kac formula; Bose-Einstein statistics; non-commutative Varadhan Lemma; quantum Spin systems; Donsker-Varadhan function},
language = {eng},
number = {5},
pages = {837-875},
publisher = {Gauthier-Villars},
title = {Asymptotic Feynman–Kac formulae for large symmetrised systems of random walks},
url = {http://eudml.org/doc/77994},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Adams, Stefan
AU - Dorlas, Tony
TI - Asymptotic Feynman–Kac formulae for large symmetrised systems of random walks
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 5
SP - 837
EP - 875
AB - We study large deviations principles for N random processes on the lattice ℤd with finite time horizon [0, β] under a symmetrised measure where all initial and terminal points are uniformly averaged over random permutations. That is, given a permutation σ of N elements and a vector (x1, …, xN) of N initial points we let the random processes terminate in the points (xσ(1), …, xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. We prove level-two large deviations principles for the mean of empirical path measures, for the mean of paths and for the mean of occupation local times under this symmetrised measure. The symmetrised measure cannot be written as a product of single random process distributions. We show a couple of important applications of these results in quantum statistical mechanics using the Feynman–Kac formulae representing traces of certain trace class operators. In particular we prove a non-commutative Varadhan lemma for quantum spin systems with Bose–Einstein statistics and mean field interactions. A special case of our large deviations principle for the mean of occupation local times of N simple random walks has the Donsker–Varadhan rate function as the rate function for the limit N→∞ but for finite time β. We give an interpretation in quantum statistical mechanics for this surprising result.
LA - eng
KW - large deviations; large systems of random processes with symmetrised initial-terminal conditions; Feynman–Kac formula; Bose–Einstein statistics; non-commutative Varadhan lemma; quantum spin systems; Donsker–Varadhan function; Feynman-Kac formula; Bose-Einstein statistics; non-commutative Varadhan Lemma; quantum Spin systems; Donsker-Varadhan function
UR - http://eudml.org/doc/77994
ER -
References
top- [1] S. Adams. Complete equivalence of the Gibbs ensembles for one-dimensional Markov systems. J. Statist. Phys. 105 (2001) 879–908. Zbl1017.82004MR1869569
- [2] S. Adams. Large deviations for empirical path measures in cycles of integer partitions, preprint. Available at arXiV:math.PR/0702053, 2007.
- [3] S. Adams. Interacting Brownian bridges and probabilistic interpretation of Bose–Einstein condensation, Habilitation thesis, University of Leipzig, 2008.
- [4] S. Adams, J. B. Bru and W. König. Large deviations for trapped interacting Brownian particles and paths. Ann. Probab. 34 (2006) 1340–1422. Zbl1105.60021MR2257650
- [5] S. Adams, W. König and J. B. Bru. Large systems of path-repellent Brownian motions in a trap at positive temperature. Electron. J. Probab. 11 (2006) 460–485. Zbl1113.60086MR2242652
- [6] S. Adams and W. König. Large deviations for many Brownian bridges with symmetrised initial-terminal condition. Probab. Theory Related Fields 142 (2008) 79–124. Zbl1156.60017MR2413267
- [7] G. Benfatto, M. Cassandro, I. Merola and E. Presutti. Limit theorems for statistics of combinatorial partitions with applications to mean field Bose gas. J. Math. Phys. 46 (2005) 033303. Zbl1067.82035MR2125575
- [8] W. Cegla, J. T. Lewis and G. A. Raggio. The free energy of quantum spin systems and large deviations. Comm. Math. Phys. 118 (1988) 337–354. Zbl0657.60041MR956171
- [9] D. A. Dawson and J. Gärtner. Multilevel large deviations and interacting diffusions. Probab. Theory Related Fields 98 (1994) 423–487. Zbl0794.60015MR1271106
- [10] T. Dorlas. A non-commutative central limit theorem. J. Math. Phys. 37 (1996) 4662–4682. Zbl0863.60024MR1408113
- [11] T. Dorlas. Probabilistic derivation of a noncommutative version of Varadhan’s Theorem. Proceedings of the Royal Irish Academy, 2007. To appear. Zbl1169.82005MR2475797
- [12] J.-D. Deuschel and D. W. Stroock. Large Deviations. AMS Chelsea Publishing, Amer. Math. Soc., 2001.
- [13] M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process expectations for large time, I–IV. Comm. Pure Appl. Math. 28 (1975) 1–47, 279–301, 29 (1979) 389–461, 36 (1983) 183–212. Zbl0512.60068
- [14] I. H. Dinwoodie and S. L. Zabell. Large deviations for exchangeable random vectors. Ann. Probab. 20 (1992) 1147–1166. Zbl0760.60025MR1175254
- [15] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Springer, New York, Berlin, 1998. Zbl0896.60013MR1619036
- [16] R. P. Feynman. Atomic theory of the λ transition in Helium. Phys. Rev. 91 (1953) 1291–1301. Zbl0053.48001
- [17] H. Föllmer. Random fields and diffusion processes. Ecole d’Eté de Saint Flour XV-XVII 101–203. Lecture Notes in Math. 1362. Springer, 1988. Zbl0661.60063MR983373
- [18] J. Ginibre. Some applications of functional integration in statistical mechanics, and field theory. C. de Witt and R. Storaeds (Eds). Gordon and Breach, New York, 1970.
- [19] F. den Hollander. Large Deviations. Amer. Math. Soc., Providence, RI, 2000. Zbl0949.60001MR1739680
- [20] O. Kallenberg. Foundations of Modern Probability. Springer, New York, 2001. Zbl0996.60001MR1876169
- [21] E. H. Lieb, R. Seiringer, J. P. Solovej and Y. Yngvason. The Mathematics of the Bose Gas and Its Condensation. Birkhäuser, Basel, 2005. Zbl1104.82012MR2143817
- [22] D. Petz, G. A. Raggio and A. Verbeure. Asymptotics of Varadhan-type and the Gibbs variational principle. Comm. Math. Phys. 121 (1989) 271–282. Zbl0682.46054MR985399
- [23] K. R. Parthasarathy. Probability Measures on Metric Spaces. Academic Press, New York, 1967. Zbl0153.19101MR226684
- [24] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1999. Zbl0917.60006MR1725357
- [25] E. Schrödinger. Über die Umkehrung der Naturgesetze. Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl. 1931 (1931) 144–153. Zbl0001.37503
- [26] E. Seneta. Non-negative Matrices and Markov Chains. Springer, New York, 1981. Zbl0471.60001MR2209438
- [27] A. Sütö. Percolation transition in the Bose gas: II. J. Phys. A: Math. Gen. 35 (2002) 6995–7002. Zbl1066.82006MR1945163
- [28] B. Tóth. Phase transition in an interacting bose system. An application of the theory of Ventsel’ and Freidlin, J. Statist. Phys. 61 (1990) 749–764. MR1086297
- [29] J. Trashorras. Large deviations for a triangular array of exchangeable random variables. Ann. Inst. H. Poincaré Probab. Statist. 35 (2002) 649–680. Zbl1034.60033MR1931582
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.