Convex entropy decay via the Bochner–Bakry–Emery approach
Pietro Caputo; Paolo Dai Pra; Gustavo Posta
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 3, page 734-753
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Bakry and M. Émery. Diffusions hypercontractives. In Séminaire de Probabilités XIX 177–206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. Zbl0561.60080MR889476
- [2] S. G. Bobkov and M. Ledoux. On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 156 (1998) 347–365. Zbl0920.60002MR1636948
- [3] S. G. Bobkov and P. Tetali. Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19 (2006) 289–336. Zbl1113.60072MR2283379
- [4] S. Bochner. Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52 (1946) 776–797. Zbl0060.38301MR18022
- [5] A. S. Boudou, P. Caputo, P. Dai Pra and G. Posta. Spectral gap estimates for interacting particle systems via a Bochner-type identity. J. Funct. Anal. 232 (2006) 222–258. Zbl1087.60071MR2200172
- [6] P. Caputo. Spectral gap inequalities in product spaces with conservation laws. In Advanced Studies in Pure Mathematics 39. H. Osada and T. Funaki (Eds). Math. Soc. Japan, Tokyo, 2004. Zbl1072.82001MR2073330
- [7] P. Caputo and G. Posta. Entropy dissipation estimates in a zero-range dynamics. Probab. Theory Related Fields 139 (2007) 65–87. Zbl1126.60082MR2322692
- [8] P. Caputo and P. Tetali. Unpublished notes, 2005.
- [9] D. Chafai. Binomial–Poisson entropic inequalities and the M/M/∞ queue. ESAIM Probab. Stat. 10 (2006) 317–339. Zbl1188.60047MR2247924
- [10] P. Dai Pra, A. M. Paganoni and G. Posta. Entropy inequalities for unbounded spin systems. Ann. Probab. 30 (2002) 1959–1976. Zbl1013.60076MR1944012
- [11] P. Dai Pra and G. Posta. Logarithmic Sobolev inequality for zero-range dynamics. Ann. Probab. 33 (2005) 2355–2401. Zbl1099.60068MR2184099
- [12] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 (1996) 695–750. Zbl0867.60043MR1410112
- [13] F. Gao and J. Quastel. Exponential decay of entropy in the random transposition and Bernoulli–Laplace models. Ann. Appl. Probab. 13 (2003) 1591–1600. Zbl1046.60003MR2023890
- [14] S. Goel. Modified logarithmic Sobolev inequalities for some models of random walk. Stochastic Process. Appl. 114 (2004) 51–79. Zbl1074.60080MR2094147
- [15] O. Johnson. Log-concavity and the maximum entropy property of the Poisson distribution. Stochastic Process. Appl. 117 (2007) 791–802. Zbl1115.60012MR2327839
- [16] A. Joulin. Poisson-type deviation inequalities for curved continuous-time Markov chains. Bernoulli 13 (2007) 782–798. Zbl1131.60069MR2348750
- [17] C. Landim, S. Sethuraman and S. R. S. Varadhan. Spectral gap for zero-range dynamics. Ann. Probab. 24 (1996) 1871–1902. Zbl0870.60095MR1415232
- [18] M. Ledoux. Logarithmic Sobolev inequalities for unbounded spin systems revisited. In Séminaire de Probabilités XXXV 167–194. Lecture Notes in Math. 1755. Springer, Berlin, 2001. Zbl0979.60096MR1837286
- [19] F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase region. II. The general case. Comm. Math. Phys. 161 (1994) 487–514. Zbl0793.60111MR1269388
- [20] L. Miclo. An example of application of discrete Hardy’s inequalities. Markov Process. Related Fields 5 (1999) 319–330. Zbl0942.60081MR1710983
- [21] D. W. Stroock and B. Zegarliński. The logarithmic Sobolev inequality for discrete spin systems on a lattice. Comm. Math. Phys. 149 (1992) 175–193. Zbl0758.60070MR1182416
- [22] L. Wu. A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Related Fields 118 (2000) 427–438. Zbl0970.60093MR1800540
- [23] H.-T. Yau. Logarithmic Sobolev inequality for lattice gases with mixing conditions. Comm. Math. Phys. 181 (1996) 367–408. Zbl0864.60079MR1414837