Convex entropy decay via the Bochner–Bakry–Emery approach
Pietro Caputo; Paolo Dai Pra; Gustavo Posta
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 3, page 734-753
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topCaputo, Pietro, Dai Pra, Paolo, and Posta, Gustavo. "Convex entropy decay via the Bochner–Bakry–Emery approach." Annales de l'I.H.P. Probabilités et statistiques 45.3 (2009): 734-753. <http://eudml.org/doc/78041>.
@article{Caputo2009,
abstract = {We develop a method, based on a Bochner-type identity, to obtain estimates on the exponential rate of decay of the relative entropy from equilibrium of Markov processes in discrete settings. When this method applies the relative entropy decays in a convex way. The method is shown to be rather powerful when applied to a class of birth and death processes. We then consider other examples, including inhomogeneous zero-range processes and Bernoulli–Laplace models. For these two models, known results were limited to the homogeneous case, and obtained via the martingale approach, whose applicability to inhomogeneous models is still unclear.},
author = {Caputo, Pietro, Dai Pra, Paolo, Posta, Gustavo},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {entropy decay; modified logarithmic Sobolev inequality; stochastic particle systems},
language = {eng},
number = {3},
pages = {734-753},
publisher = {Gauthier-Villars},
title = {Convex entropy decay via the Bochner–Bakry–Emery approach},
url = {http://eudml.org/doc/78041},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Caputo, Pietro
AU - Dai Pra, Paolo
AU - Posta, Gustavo
TI - Convex entropy decay via the Bochner–Bakry–Emery approach
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 3
SP - 734
EP - 753
AB - We develop a method, based on a Bochner-type identity, to obtain estimates on the exponential rate of decay of the relative entropy from equilibrium of Markov processes in discrete settings. When this method applies the relative entropy decays in a convex way. The method is shown to be rather powerful when applied to a class of birth and death processes. We then consider other examples, including inhomogeneous zero-range processes and Bernoulli–Laplace models. For these two models, known results were limited to the homogeneous case, and obtained via the martingale approach, whose applicability to inhomogeneous models is still unclear.
LA - eng
KW - entropy decay; modified logarithmic Sobolev inequality; stochastic particle systems
UR - http://eudml.org/doc/78041
ER -
References
top- [1] D. Bakry and M. Émery. Diffusions hypercontractives. In Séminaire de Probabilités XIX 177–206. Lecture Notes in Math. 1123. Springer, Berlin, 1985. Zbl0561.60080MR889476
- [2] S. G. Bobkov and M. Ledoux. On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 156 (1998) 347–365. Zbl0920.60002MR1636948
- [3] S. G. Bobkov and P. Tetali. Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19 (2006) 289–336. Zbl1113.60072MR2283379
- [4] S. Bochner. Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52 (1946) 776–797. Zbl0060.38301MR18022
- [5] A. S. Boudou, P. Caputo, P. Dai Pra and G. Posta. Spectral gap estimates for interacting particle systems via a Bochner-type identity. J. Funct. Anal. 232 (2006) 222–258. Zbl1087.60071MR2200172
- [6] P. Caputo. Spectral gap inequalities in product spaces with conservation laws. In Advanced Studies in Pure Mathematics 39. H. Osada and T. Funaki (Eds). Math. Soc. Japan, Tokyo, 2004. Zbl1072.82001MR2073330
- [7] P. Caputo and G. Posta. Entropy dissipation estimates in a zero-range dynamics. Probab. Theory Related Fields 139 (2007) 65–87. Zbl1126.60082MR2322692
- [8] P. Caputo and P. Tetali. Unpublished notes, 2005.
- [9] D. Chafai. Binomial–Poisson entropic inequalities and the M/M/∞ queue. ESAIM Probab. Stat. 10 (2006) 317–339. Zbl1188.60047MR2247924
- [10] P. Dai Pra, A. M. Paganoni and G. Posta. Entropy inequalities for unbounded spin systems. Ann. Probab. 30 (2002) 1959–1976. Zbl1013.60076MR1944012
- [11] P. Dai Pra and G. Posta. Logarithmic Sobolev inequality for zero-range dynamics. Ann. Probab. 33 (2005) 2355–2401. Zbl1099.60068MR2184099
- [12] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 (1996) 695–750. Zbl0867.60043MR1410112
- [13] F. Gao and J. Quastel. Exponential decay of entropy in the random transposition and Bernoulli–Laplace models. Ann. Appl. Probab. 13 (2003) 1591–1600. Zbl1046.60003MR2023890
- [14] S. Goel. Modified logarithmic Sobolev inequalities for some models of random walk. Stochastic Process. Appl. 114 (2004) 51–79. Zbl1074.60080MR2094147
- [15] O. Johnson. Log-concavity and the maximum entropy property of the Poisson distribution. Stochastic Process. Appl. 117 (2007) 791–802. Zbl1115.60012MR2327839
- [16] A. Joulin. Poisson-type deviation inequalities for curved continuous-time Markov chains. Bernoulli 13 (2007) 782–798. Zbl1131.60069MR2348750
- [17] C. Landim, S. Sethuraman and S. R. S. Varadhan. Spectral gap for zero-range dynamics. Ann. Probab. 24 (1996) 1871–1902. Zbl0870.60095MR1415232
- [18] M. Ledoux. Logarithmic Sobolev inequalities for unbounded spin systems revisited. In Séminaire de Probabilités XXXV 167–194. Lecture Notes in Math. 1755. Springer, Berlin, 2001. Zbl0979.60096MR1837286
- [19] F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase region. II. The general case. Comm. Math. Phys. 161 (1994) 487–514. Zbl0793.60111MR1269388
- [20] L. Miclo. An example of application of discrete Hardy’s inequalities. Markov Process. Related Fields 5 (1999) 319–330. Zbl0942.60081MR1710983
- [21] D. W. Stroock and B. Zegarliński. The logarithmic Sobolev inequality for discrete spin systems on a lattice. Comm. Math. Phys. 149 (1992) 175–193. Zbl0758.60070MR1182416
- [22] L. Wu. A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probab. Theory Related Fields 118 (2000) 427–438. Zbl0970.60093MR1800540
- [23] H.-T. Yau. Logarithmic Sobolev inequality for lattice gases with mixing conditions. Comm. Math. Phys. 181 (1996) 367–408. Zbl0864.60079MR1414837
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.