Fractional multiplicative processes
Julien Barral; Benoît Mandelbrot
Annales de l'I.H.P. Probabilités et statistiques (2009)
- Volume: 45, Issue: 4, page 1116-1129
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBarral, Julien, and Mandelbrot, Benoît. "Fractional multiplicative processes." Annales de l'I.H.P. Probabilités et statistiques 45.4 (2009): 1116-1129. <http://eudml.org/doc/78056>.
@article{Barral2009,
abstract = {Statistically self-similar measures on [0, 1] are limit of multiplicative cascades of random weights distributed on the b-adic subintervals of [0, 1]. These weights are i.i.d., positive, and of expectation 1/b. We extend these cascades naturally by allowing the random weights to take negative values. This yields martingales taking values in the space of continuous functions on [0, 1]. Specifically, we consider for each H∈(0, 1) the martingale (Bn)n≥1 obtained when the weights take the values −b−H and b−H, in order to get Bn converging almost surely uniformly to a statistically self-similar function B whose Hölder regularity and fractal properties are comparable with that of the fractional brownian motion of exponent H. This indeed holds when H∈(1/2, 1). Also the construction introduces a new kind of law, one that it is stable under random weighted averaging and satisfies the same functional equation as the standard symmetric stable law of index 1/H. When H∈(0, 1/2], to the contrary, Bn diverges almost surely. However, a natural normalization factor an makes the normalized correlated random walk Bn/an converge in law, as n tends to ∞, to the restriction to [0, 1] of the standard brownian motion. Limit theorems are also associated with the case H>1/2.},
author = {Barral, Julien, Mandelbrot, Benoît},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random functions; martingales; central limit theorem; brownian motion; laws stable under random weighted mean; fractals; Hausdorff dimension; Brownian motion},
language = {eng},
number = {4},
pages = {1116-1129},
publisher = {Gauthier-Villars},
title = {Fractional multiplicative processes},
url = {http://eudml.org/doc/78056},
volume = {45},
year = {2009},
}
TY - JOUR
AU - Barral, Julien
AU - Mandelbrot, Benoît
TI - Fractional multiplicative processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2009
PB - Gauthier-Villars
VL - 45
IS - 4
SP - 1116
EP - 1129
AB - Statistically self-similar measures on [0, 1] are limit of multiplicative cascades of random weights distributed on the b-adic subintervals of [0, 1]. These weights are i.i.d., positive, and of expectation 1/b. We extend these cascades naturally by allowing the random weights to take negative values. This yields martingales taking values in the space of continuous functions on [0, 1]. Specifically, we consider for each H∈(0, 1) the martingale (Bn)n≥1 obtained when the weights take the values −b−H and b−H, in order to get Bn converging almost surely uniformly to a statistically self-similar function B whose Hölder regularity and fractal properties are comparable with that of the fractional brownian motion of exponent H. This indeed holds when H∈(1/2, 1). Also the construction introduces a new kind of law, one that it is stable under random weighted averaging and satisfies the same functional equation as the standard symmetric stable law of index 1/H. When H∈(0, 1/2], to the contrary, Bn diverges almost surely. However, a natural normalization factor an makes the normalized correlated random walk Bn/an converge in law, as n tends to ∞, to the restriction to [0, 1] of the standard brownian motion. Limit theorems are also associated with the case H>1/2.
LA - eng
KW - random functions; martingales; central limit theorem; brownian motion; laws stable under random weighted mean; fractals; Hausdorff dimension; Brownian motion
UR - http://eudml.org/doc/78056
ER -
References
top- [1] M. Arbeiter and N. Patzschke. Random self-similar multifractals. Math. Nachr. 181 (1996) 5–42. Zbl0873.28003MR1409071
- [2] J. Barral. Continuity of the multifractal spectrum of a statistically self-similar measure. J. Theoret. Probab. 13 (2000) 1027–1060. Zbl0977.37024MR1820501
- [3] J. Barral and B. B. Mandelbrot. Random multiplicative multifractal measures. Proc. Sympos. Pure Math. 72 3–90. AMS, Providence, RI, 2004. Zbl1117.28006MR2112119
- [4] J. Barral and S. Seuret. The singularity spectrum of Lévy processes in multifractal time. Adv. Math. 214 (2007) 437–468. Zbl1131.60039MR2348038
- [5] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. Zbl0861.60003MR1406564
- [6] P. Billingsley. Convergence of Probability Measures, 2nd edition. Probability and Statistics. Wiley, New York, 1999. Zbl0944.60003MR1700749
- [7] P. Collet and F. Koukiou. Large deviations for multiplicative chaos. Comm. Math. Phys. 147 (1992) 329–342. Zbl0755.60022MR1174416
- [8] J. Dedecker, P. Doukhan, G. Lang, J. R. León, S. Louhichi and C. Prieur. Weak Dependence: With Examples and Applications. Lecture Notes in Statistics 190. Springer, New York, 2007. Zbl1165.62001MR2338725
- [9] R. Durrett and T. Liggett. Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64 (1983) 275–301. Zbl0506.60097MR716487
- [10] A. Dvoretsky, P. Erdös and S. Kakutani. Nonincrease everywhere of the Brownian motion process. Proc. 4th Berkeley Sympos. Math. Stat. Prob. II (1961) 103–116. Zbl0111.15002MR132608
- [11] N. Enriquez. A simple construction of the fractional Brownian motion. Stochastic Process Appl. 109 (2004) 203–223. Zbl1075.60019MR2031768
- [12] K. J. Falconer. The multifractal spectrum of statistically self-similar measures. J. Theoret. Probab. 7 (1994) 681–702. Zbl0805.60034MR1284660
- [13] K. J. Falconer. Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, New Jersey, 2003. Zbl1060.28005MR2118797
- [14] Y. Guivarc’h. Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré Probab. Statist. 26 (1990) 261–285. Zbl0703.60012MR1063751
- [15] R. Holley and E. C. Waymire. Multifractal dimensions and scaling exponents for strongly bounded random fractals. Ann. Appl. Probab. 2 (1992) 819–845. Zbl0786.60064MR1189419
- [16] B. R. Hunt. The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc. 126 (1998) 791–800. Zbl0897.28004MR1452806
- [17] S. Jaffard. The multifractal nature of Lévy processes. Probab. Theory Related Fields 114 (1999) 207–227. Zbl0947.60039MR1701520
- [18] J.-P. Kahane. Multiplications aléaroires et dimensions de Hausdorff. Ann. Inst. H. Poincaré Probab Statist. 23 (1987) 289–296. Zbl0619.60005MR898497
- [19] J.-P. Kahane. J. Peyrière. Sur certaines martingales de Benoît Mandelbrot. Adv. Math. 22 (1976) 131–145. Zbl0349.60051MR431355
- [20] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer, New York, 1988. Zbl0638.60065MR917065
- [21] A. N. Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Doklady) Acad. URSS (N.S.) 26 (1940) 115–118. Zbl66.0552.03MR3441JFM66.0552.03
- [22] Q. Liu. Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stochastic Process. Appl. 95 (2001) 83–107. Zbl1058.60068MR1847093
- [23] B. B. Mandelbrot and J. W. van Ness. Fractional Brownian motion, fractional noises and applications. SIAM Review 10 (1968) 422–437. Zbl0179.47801MR242239
- [24] B. B. Mandelbrot. Multiplications aléatoire itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris 278 (1974) 289–292, 355–358. Zbl0276.60096
- [25] B. B. Mandelbrot. Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62 (1974) 331–358. Zbl0289.76031
- [26] G. M. Molchan. Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179 (1996) 681–702. Zbl0853.76032MR1400758
- [27] M. Ossiander and E. C. Waymire. Statistical estimation for multiplicative cascades. Ann. Statist. 28 (2000) 1533–1560. Zbl1105.60305MR1835030
- [28] M. Taqqu. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 (1975) 287–302. Zbl0303.60033MR400329
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.