A uniform dimension result for two-dimensional fractional multiplicative processes

Xiong Jin

Annales de l'I.H.P. Probabilités et statistiques (2014)

  • Volume: 50, Issue: 2, page 512-523
  • ISSN: 0246-0203

Abstract

top
Given a two-dimensional fractional multiplicative process ( F t ) t [ 0 , 1 ] determined by two Hurst exponents H 1 and H 2 , we show that there is an associated uniform Hausdorff dimension result for the images of subsets of [ 0 , 1 ] by F if and only if H 1 = H 2 .

How to cite

top

Jin, Xiong. "A uniform dimension result for two-dimensional fractional multiplicative processes." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 512-523. <http://eudml.org/doc/271995>.

@article{Jin2014,
abstract = {Given a two-dimensional fractional multiplicative process $(F_\{t\})_\{t\in [0,1]\}$ determined by two Hurst exponents $H_\{1\}$ and $H_\{2\}$, we show that there is an associated uniform Hausdorff dimension result for the images of subsets of $[0,1]$ by $F$ if and only if $H_\{1\}=H_\{2\}$.},
author = {Jin, Xiong},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Hausdorff dimension; fractional multiplicative processes; uniform dimension result; level sets},
language = {eng},
number = {2},
pages = {512-523},
publisher = {Gauthier-Villars},
title = {A uniform dimension result for two-dimensional fractional multiplicative processes},
url = {http://eudml.org/doc/271995},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Jin, Xiong
TI - A uniform dimension result for two-dimensional fractional multiplicative processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 512
EP - 523
AB - Given a two-dimensional fractional multiplicative process $(F_{t})_{t\in [0,1]}$ determined by two Hurst exponents $H_{1}$ and $H_{2}$, we show that there is an associated uniform Hausdorff dimension result for the images of subsets of $[0,1]$ by $F$ if and only if $H_{1}=H_{2}$.
LA - eng
KW - Hausdorff dimension; fractional multiplicative processes; uniform dimension result; level sets
UR - http://eudml.org/doc/271995
ER -

References

top
  1. [1] J. Barral and X. Jin. Multifractal analysis of complex random cascades. Comm. Math. Phys.297 (2010) 129–168. Zbl1206.28009MR2645749
  2. [2] J. Barral, X. Jin and B. Mandelbrot. Convergence of complex multiplicative cascades. Ann. Appl. Probab.20 (2010) 1219–1252. Zbl1221.60028MR2676938
  3. [3] J. Barral and B. Mandelbrot. Fractional multiplicative processes. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 1116–1129. Zbl1201.60035MR2572167
  4. [4] I. Benjamini and O. Schramm. KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys.289 (2009) 653–662. Zbl1170.83006MR2506765
  5. [5] R. M. Blumenthal and R. K. Getoor. A dimension theorem for sample functions of stable processes. Illinois J. Math.4 (1960) 370–375. Zbl0093.14402MR121881
  6. [6] R. M. Blumenthal and R. K. Getoor. Sample functions of stochastic processes with stationary independent increments. J. Math. Mech.10 (1961) 493–516. Zbl0097.33703MR123362
  7. [7] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math.185 (2011) 333–393. Zbl1226.81241MR2819163
  8. [8] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, Hoboken, NJ, 2003. Zbl1285.28011MR2118797
  9. [9] J. Hawkes. Some dimension theorems for the sample functions of stable processes. Indiana Univ. Math. J. 20 (1970/71) 733–738. Zbl0233.60032MR292164
  10. [10] J. Hawkes and W. E. Pruitt. Uniform dimension results for processes with independent increments. Z. Wahrsch. Verw. Gebiete 28 (1973/74) 277–288. Zbl0268.60063MR362508
  11. [11] X. Jin. The graph and range singularity spectra of b -adic independent cascade functions. Adv. Math.226 (2011) 4987–5017. Zbl1213.26007MR2775892
  12. [12] X. Jin. Dimension result and KPZ formula for two-dimensional multiplicative cascade processes. Ann. Probab.40 (2012) 1–18. Zbl1298.60046MR2917765
  13. [13] J.-P. Kahane. Some Random Series of Functions, 2nd edition. Cambridge Studies in Advanced Mathematics 5. Cambridge Univ. Press, Cambridge, 1985. Zbl0571.60002MR833073
  14. [14] J.-P. Kahane and J. Peyrière. Sur certaines martingales de Benoit Mandelbrot. Adv. Math.22 (1976) 131–145. Zbl0349.60051MR431355
  15. [15] R. Kaufman. Une propriété métrique du mouvement brownien. C. R. Acad. Sci. Paris Sér. A-B 268 (1969) A727–A728. Zbl0174.21401MR240874
  16. [16] D. Khoshnevisan and Y. Xiao. Lévy processes: capacity and Hausdorff dimension. Ann. Probab.33 (2005) 841–878. Zbl1072.60040MR2135306
  17. [17] P. Lévy. La mesure de Hausdorff de la courbe du mouvement brownien. Giorn. Ist. Ital. Attuari16 (1953) 1–37. Zbl0053.10101MR64344
  18. [18] H. P. McKean, Jr. Hausdorff-Besicovitch dimension of Brownian motion paths. Duke Math. J. 22 (1955) 229–234. Zbl0066.04502MR69425
  19. [19] P. W. Millar. Path behavior of processes with stationary independent increments. Z. Wahrsch. Verw. Gebiete17 (1971) 53–73. Zbl0196.18602MR324781
  20. [20] R. Rhodes and V. Vargas. KPZ formula for log-infinitely divisible multifractal random measures. ESAIM: Probab. Stat. 15 (2011) 358–371. Zbl1268.60070MR2870520
  21. [21] S. J. Taylor. The Hausdorff α -dimensional measure of Brownian paths in n -space. Math. Proc. Cambridge Philos. Soc.49 (1953) 31–39. Zbl0050.05803MR52719
  22. [22] S. J. Taylor. The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc.100 (1986) 383–406. Zbl0622.60021MR857718
  23. [23] D. Wu and Y. Xiao. Uniform dimension results for Gaussian random fields. Sci. China Ser. A52 (2009) 1478–1496. Zbl1205.60078MR2520589
  24. [24] Y. Xiao. Dimension results for Gaussian vector fields and index- α stable fields. Ann. Probab.23 (1995) 273–291. Zbl0834.60040MR1330771
  25. [25] Y. Xiao. Random fractals and Markov processes. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2 261–338. Proc. Sympos. Pure Math. 72. Amer. Math. Soc., Providence, RI, 2004. Zbl1068.60092MR2112126

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.