A uniform dimension result for two-dimensional fractional multiplicative processes
Annales de l'I.H.P. Probabilités et statistiques (2014)
- Volume: 50, Issue: 2, page 512-523
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topJin, Xiong. "A uniform dimension result for two-dimensional fractional multiplicative processes." Annales de l'I.H.P. Probabilités et statistiques 50.2 (2014): 512-523. <http://eudml.org/doc/271995>.
@article{Jin2014,
abstract = {Given a two-dimensional fractional multiplicative process $(F_\{t\})_\{t\in [0,1]\}$ determined by two Hurst exponents $H_\{1\}$ and $H_\{2\}$, we show that there is an associated uniform Hausdorff dimension result for the images of subsets of $[0,1]$ by $F$ if and only if $H_\{1\}=H_\{2\}$.},
author = {Jin, Xiong},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Hausdorff dimension; fractional multiplicative processes; uniform dimension result; level sets},
language = {eng},
number = {2},
pages = {512-523},
publisher = {Gauthier-Villars},
title = {A uniform dimension result for two-dimensional fractional multiplicative processes},
url = {http://eudml.org/doc/271995},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Jin, Xiong
TI - A uniform dimension result for two-dimensional fractional multiplicative processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2014
PB - Gauthier-Villars
VL - 50
IS - 2
SP - 512
EP - 523
AB - Given a two-dimensional fractional multiplicative process $(F_{t})_{t\in [0,1]}$ determined by two Hurst exponents $H_{1}$ and $H_{2}$, we show that there is an associated uniform Hausdorff dimension result for the images of subsets of $[0,1]$ by $F$ if and only if $H_{1}=H_{2}$.
LA - eng
KW - Hausdorff dimension; fractional multiplicative processes; uniform dimension result; level sets
UR - http://eudml.org/doc/271995
ER -
References
top- [1] J. Barral and X. Jin. Multifractal analysis of complex random cascades. Comm. Math. Phys.297 (2010) 129–168. Zbl1206.28009MR2645749
- [2] J. Barral, X. Jin and B. Mandelbrot. Convergence of complex multiplicative cascades. Ann. Appl. Probab.20 (2010) 1219–1252. Zbl1221.60028MR2676938
- [3] J. Barral and B. Mandelbrot. Fractional multiplicative processes. Ann. Inst. Henri Poincaré Probab. Stat.45 (2009) 1116–1129. Zbl1201.60035MR2572167
- [4] I. Benjamini and O. Schramm. KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys.289 (2009) 653–662. Zbl1170.83006MR2506765
- [5] R. M. Blumenthal and R. K. Getoor. A dimension theorem for sample functions of stable processes. Illinois J. Math.4 (1960) 370–375. Zbl0093.14402MR121881
- [6] R. M. Blumenthal and R. K. Getoor. Sample functions of stochastic processes with stationary independent increments. J. Math. Mech.10 (1961) 493–516. Zbl0097.33703MR123362
- [7] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math.185 (2011) 333–393. Zbl1226.81241MR2819163
- [8] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, Hoboken, NJ, 2003. Zbl1285.28011MR2118797
- [9] J. Hawkes. Some dimension theorems for the sample functions of stable processes. Indiana Univ. Math. J. 20 (1970/71) 733–738. Zbl0233.60032MR292164
- [10] J. Hawkes and W. E. Pruitt. Uniform dimension results for processes with independent increments. Z. Wahrsch. Verw. Gebiete 28 (1973/74) 277–288. Zbl0268.60063MR362508
- [11] X. Jin. The graph and range singularity spectra of -adic independent cascade functions. Adv. Math.226 (2011) 4987–5017. Zbl1213.26007MR2775892
- [12] X. Jin. Dimension result and KPZ formula for two-dimensional multiplicative cascade processes. Ann. Probab.40 (2012) 1–18. Zbl1298.60046MR2917765
- [13] J.-P. Kahane. Some Random Series of Functions, 2nd edition. Cambridge Studies in Advanced Mathematics 5. Cambridge Univ. Press, Cambridge, 1985. Zbl0571.60002MR833073
- [14] J.-P. Kahane and J. Peyrière. Sur certaines martingales de Benoit Mandelbrot. Adv. Math.22 (1976) 131–145. Zbl0349.60051MR431355
- [15] R. Kaufman. Une propriété métrique du mouvement brownien. C. R. Acad. Sci. Paris Sér. A-B 268 (1969) A727–A728. Zbl0174.21401MR240874
- [16] D. Khoshnevisan and Y. Xiao. Lévy processes: capacity and Hausdorff dimension. Ann. Probab.33 (2005) 841–878. Zbl1072.60040MR2135306
- [17] P. Lévy. La mesure de Hausdorff de la courbe du mouvement brownien. Giorn. Ist. Ital. Attuari16 (1953) 1–37. Zbl0053.10101MR64344
- [18] H. P. McKean, Jr. Hausdorff-Besicovitch dimension of Brownian motion paths. Duke Math. J. 22 (1955) 229–234. Zbl0066.04502MR69425
- [19] P. W. Millar. Path behavior of processes with stationary independent increments. Z. Wahrsch. Verw. Gebiete17 (1971) 53–73. Zbl0196.18602MR324781
- [20] R. Rhodes and V. Vargas. KPZ formula for log-infinitely divisible multifractal random measures. ESAIM: Probab. Stat. 15 (2011) 358–371. Zbl1268.60070MR2870520
- [21] S. J. Taylor. The Hausdorff -dimensional measure of Brownian paths in -space. Math. Proc. Cambridge Philos. Soc.49 (1953) 31–39. Zbl0050.05803MR52719
- [22] S. J. Taylor. The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc.100 (1986) 383–406. Zbl0622.60021MR857718
- [23] D. Wu and Y. Xiao. Uniform dimension results for Gaussian random fields. Sci. China Ser. A52 (2009) 1478–1496. Zbl1205.60078MR2520589
- [24] Y. Xiao. Dimension results for Gaussian vector fields and index- stable fields. Ann. Probab.23 (1995) 273–291. Zbl0834.60040MR1330771
- [25] Y. Xiao. Random fractals and Markov processes. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2 261–338. Proc. Sympos. Pure Math. 72. Amer. Math. Soc., Providence, RI, 2004. Zbl1068.60092MR2112126
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.