Maximal monotone relations and the second derivatives of nonsmooth functions

R. T. Rockafellar

Annales de l'I.H.P. Analyse non linéaire (1985)

  • Volume: 2, Issue: 3, page 167-184
  • ISSN: 0294-1449

How to cite

top

Rockafellar, R. T.. "Maximal monotone relations and the second derivatives of nonsmooth functions." Annales de l'I.H.P. Analyse non linéaire 2.3 (1985): 167-184. <http://eudml.org/doc/78095>.

@article{Rockafellar1985,
author = {Rockafellar, R. T.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonsmooth analysis; generalized second derivatives; Clarke tangent cone; maximal monotone relation},
language = {eng},
number = {3},
pages = {167-184},
publisher = {Gauthier-Villars},
title = {Maximal monotone relations and the second derivatives of nonsmooth functions},
url = {http://eudml.org/doc/78095},
volume = {2},
year = {1985},
}

TY - JOUR
AU - Rockafellar, R. T.
TI - Maximal monotone relations and the second derivatives of nonsmooth functions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 3
SP - 167
EP - 184
LA - eng
KW - nonsmooth analysis; generalized second derivatives; Clarke tangent cone; maximal monotone relation
UR - http://eudml.org/doc/78095
ER -

References

top
  1. [1] A.D. Alexandrov, The existence almost everywhere of the second differential of a convex function and some associated properties of convex surfaces, Ucenye Zapiski Leningr. Gos. Univ. Ser. Mat., t. 37, 1939, p. 3-35 (in Russian). 
  2. [2] H. Attouch, Familles d'opérateurs maximaux monotones et mesurabilité, Annali di Matematica Pura et Applicata, t. 120, 1979, p. 35-111. Zbl0416.47019MR551062
  3. [3] H. Attouch and R.J.-B. Wets, A convergence for bivariate functions aimed at the convergence of saddle values, in Mathematical Theory of Optimization (P. Cecconi and T. Zolezzi, eds.), Springer-VerlagLecture Notes in Math., t. 997, 1983. Zbl0516.49009MR713803
  4. [4] H. Attouch and R.J.-B. Wets, A convergence theory for saddle functions, Trans. Amer. Math. Soc., t. 226, 1983. Zbl0525.49009MR712247
  5. [5] J.P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. of Op. Research, t. 9, 1984, p. 87-111. Zbl0539.90085MR736641
  6. [6] A. Auslender, Differential properties of the support function of the ∈-subdifferential of a convex function, Math. Programming, forthcoming. Zbl0505.90067MR676945
  7. [7] A. Auslender, Stability in mathematical programming with nondifferentiable data, SIAM J. Control Opt., t. 22, 1984, p. 239-254. Zbl0538.49020MR732426
  8. [8] F.H. Clarke, Nonsmooth Analysis and Optimization, Wiley-Interscience, 1983. Zbl0582.49001MR709590
  9. [9] F.H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., t. 205, 1975, p. 247-262. Zbl0307.26012MR367131
  10. [10] F.H. Clarke, On the inverse function theorem, Pacific J. Math., t. 67, 1976, p. 97-102. Zbl0331.26013MR425047
  11. [11] B. Cornet, Regularity properties of normal and tangent cones, forthcoming. [12] S. DOLECKI, G. SALINETTI and R. J.-B. WETS, Convergence of functions: equi-semicontinuity, Trans. Amer. Math. Soc., t. 276, 1983, p. 409-429. Zbl0504.49006
  12. [13] J.-B. Hiriart-Urruty, Approximating a second-order directional derivative for nonsmooth convex functions, SIAM J. Control Opt., t. 20, 1982, p. 783-807. Zbl0507.49021MR675570
  13. [14] J.-B. Hiriart-Urruty, Calculus rules on the approximate second-order directional derivative of a convex function, SIAM J. Control Opt., t. 22, 1984, p. 381-404. Zbl0557.90077MR739833
  14. [15] C. Lemarechal and E. Nurminski, Sur la différentiabilité de la fonction d'appui du sous-différentiel approaché, C. R. Acad. Sci. Paris, t. 290 Sér. A, 1980, p. 855-858. Zbl0459.49011
  15. [16] F. Mignot, Contrôle dans les inéquations variationnelles elliptiques, J. Functional Anal., t. 22, 1976, p. 130-185. Zbl0364.49003MR423155
  16. [17] G.J. Minty, Monotone (nonlinear) operations in Hilbert space, Duke Math. J., t. 29, 1962, p. 341-346. Zbl0111.31202MR169064
  17. [18] J.-P. Penot, A characterization of tangential regularity, Nonlinear Anal., t. 5, 1981, p. 625-643. Zbl0472.58010MR618216
  18. [19] Yu.G. Reshetniak, Generalized derivatives and differentiability almost everywhere, Mat. Sbornik, t. 75, 1968, p. 323-334. Zbl0176.12001MR225159
  19. [20] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. Zbl0193.18401MR274683
  20. [21] R.T. Rockafellar, Monotone operators associated with saddle functions and minimax problems, in NonlinearFunctional Analysis, Part I (F. E. Browder, ed.), Proc. of Symposia in Pure Math., Amer. Math. Soc., t. 18, 1970, p. 241-250. Zbl0237.47030MR285942
  21. [22] R.T. Rockafellar, Generalized subgradients in mathematical programming, in Mathematical Programming Bonn 1982 : The State of the Art : (A. Bachem et al., eds.), Springer-Verlag, Berlin, 1983, p. 368-380. Zbl0557.90083MR717408
  22. [24] R.T. Rockafellar and R.J.-B. Wets, Variational systems: An introduction, in Multifunctions and Integrands (G. Salinetti, ed.), Springer-VerlagLecture Notes in Math. (1984). MR785574
  23. [25] S. Saks, Theory of the Integral, second revised edition, Hafner Publishing Co., New York, 1937. Zbl0017.30004JFM63.0183.05
  24. [26] G. Salinetti and R.J.-B. Wets, On the convergence of closed-valued measurable multifunctions, Trans. Amer. Math. Soc., t. 266, 1981, p. 275-289. Zbl0501.28005MR613796
  25. [27] R.J.-B. Wets, Convergence of convex function, variational inequalities and convex optimization problems, in Variational Inequalities and Complementarity Problems (R. Cottle, F. Giannessi and J.-L. Lions, eds.), Wiley, 1980, p. 405-419. Zbl0481.90066MR578760

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.