Maximal monotone relations and the second derivatives of nonsmooth functions
Annales de l'I.H.P. Analyse non linéaire (1985)
- Volume: 2, Issue: 3, page 167-184
- ISSN: 0294-1449
Access Full Article
topHow to cite
topRockafellar, R. T.. "Maximal monotone relations and the second derivatives of nonsmooth functions." Annales de l'I.H.P. Analyse non linéaire 2.3 (1985): 167-184. <http://eudml.org/doc/78095>.
@article{Rockafellar1985,
author = {Rockafellar, R. T.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonsmooth analysis; generalized second derivatives; Clarke tangent cone; maximal monotone relation},
language = {eng},
number = {3},
pages = {167-184},
publisher = {Gauthier-Villars},
title = {Maximal monotone relations and the second derivatives of nonsmooth functions},
url = {http://eudml.org/doc/78095},
volume = {2},
year = {1985},
}
TY - JOUR
AU - Rockafellar, R. T.
TI - Maximal monotone relations and the second derivatives of nonsmooth functions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1985
PB - Gauthier-Villars
VL - 2
IS - 3
SP - 167
EP - 184
LA - eng
KW - nonsmooth analysis; generalized second derivatives; Clarke tangent cone; maximal monotone relation
UR - http://eudml.org/doc/78095
ER -
References
top- [1] A.D. Alexandrov, The existence almost everywhere of the second differential of a convex function and some associated properties of convex surfaces, Ucenye Zapiski Leningr. Gos. Univ. Ser. Mat., t. 37, 1939, p. 3-35 (in Russian).
- [2] H. Attouch, Familles d'opérateurs maximaux monotones et mesurabilité, Annali di Matematica Pura et Applicata, t. 120, 1979, p. 35-111. Zbl0416.47019MR551062
- [3] H. Attouch and R.J.-B. Wets, A convergence for bivariate functions aimed at the convergence of saddle values, in Mathematical Theory of Optimization (P. Cecconi and T. Zolezzi, eds.), Springer-VerlagLecture Notes in Math., t. 997, 1983. Zbl0516.49009MR713803
- [4] H. Attouch and R.J.-B. Wets, A convergence theory for saddle functions, Trans. Amer. Math. Soc., t. 226, 1983. Zbl0525.49009MR712247
- [5] J.P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. of Op. Research, t. 9, 1984, p. 87-111. Zbl0539.90085MR736641
- [6] A. Auslender, Differential properties of the support function of the ∈-subdifferential of a convex function, Math. Programming, forthcoming. Zbl0505.90067MR676945
- [7] A. Auslender, Stability in mathematical programming with nondifferentiable data, SIAM J. Control Opt., t. 22, 1984, p. 239-254. Zbl0538.49020MR732426
- [8] F.H. Clarke, Nonsmooth Analysis and Optimization, Wiley-Interscience, 1983. Zbl0582.49001MR709590
- [9] F.H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., t. 205, 1975, p. 247-262. Zbl0307.26012MR367131
- [10] F.H. Clarke, On the inverse function theorem, Pacific J. Math., t. 67, 1976, p. 97-102. Zbl0331.26013MR425047
- [11] B. Cornet, Regularity properties of normal and tangent cones, forthcoming. [12] S. DOLECKI, G. SALINETTI and R. J.-B. WETS, Convergence of functions: equi-semicontinuity, Trans. Amer. Math. Soc., t. 276, 1983, p. 409-429. Zbl0504.49006
- [13] J.-B. Hiriart-Urruty, Approximating a second-order directional derivative for nonsmooth convex functions, SIAM J. Control Opt., t. 20, 1982, p. 783-807. Zbl0507.49021MR675570
- [14] J.-B. Hiriart-Urruty, Calculus rules on the approximate second-order directional derivative of a convex function, SIAM J. Control Opt., t. 22, 1984, p. 381-404. Zbl0557.90077MR739833
- [15] C. Lemarechal and E. Nurminski, Sur la différentiabilité de la fonction d'appui du sous-différentiel approaché, C. R. Acad. Sci. Paris, t. 290 Sér. A, 1980, p. 855-858. Zbl0459.49011
- [16] F. Mignot, Contrôle dans les inéquations variationnelles elliptiques, J. Functional Anal., t. 22, 1976, p. 130-185. Zbl0364.49003MR423155
- [17] G.J. Minty, Monotone (nonlinear) operations in Hilbert space, Duke Math. J., t. 29, 1962, p. 341-346. Zbl0111.31202MR169064
- [18] J.-P. Penot, A characterization of tangential regularity, Nonlinear Anal., t. 5, 1981, p. 625-643. Zbl0472.58010MR618216
- [19] Yu.G. Reshetniak, Generalized derivatives and differentiability almost everywhere, Mat. Sbornik, t. 75, 1968, p. 323-334. Zbl0176.12001MR225159
- [20] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. Zbl0193.18401MR274683
- [21] R.T. Rockafellar, Monotone operators associated with saddle functions and minimax problems, in NonlinearFunctional Analysis, Part I (F. E. Browder, ed.), Proc. of Symposia in Pure Math., Amer. Math. Soc., t. 18, 1970, p. 241-250. Zbl0237.47030MR285942
- [22] R.T. Rockafellar, Generalized subgradients in mathematical programming, in Mathematical Programming Bonn 1982 : The State of the Art : (A. Bachem et al., eds.), Springer-Verlag, Berlin, 1983, p. 368-380. Zbl0557.90083MR717408
- [24] R.T. Rockafellar and R.J.-B. Wets, Variational systems: An introduction, in Multifunctions and Integrands (G. Salinetti, ed.), Springer-VerlagLecture Notes in Math. (1984). MR785574
- [25] S. Saks, Theory of the Integral, second revised edition, Hafner Publishing Co., New York, 1937. Zbl0017.30004JFM63.0183.05
- [26] G. Salinetti and R.J.-B. Wets, On the convergence of closed-valued measurable multifunctions, Trans. Amer. Math. Soc., t. 266, 1981, p. 275-289. Zbl0501.28005MR613796
- [27] R.J.-B. Wets, Convergence of convex function, variational inequalities and convex optimization problems, in Variational Inequalities and Complementarity Problems (R. Cottle, F. Giannessi and J.-L. Lions, eds.), Wiley, 1980, p. 405-419. Zbl0481.90066MR578760
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.