Proto-differentiability of set-valued mappings and its applications in optimization

R. T. Rockafellar

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 449-482
  • ISSN: 0294-1449

How to cite

top

Rockafellar, R. T.. "Proto-differentiability of set-valued mappings and its applications in optimization." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 449-482. <http://eudml.org/doc/78207>.

@article{Rockafellar1989,
author = {Rockafellar, R. T.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semi-differentiability; Lipschitz properties; perturbations of constraints; set convergence; nonsmooth analysis; Proto- differentiability; set-valued mapping; parametrized variational inequality; optimality conditions},
language = {eng},
pages = {449-482},
publisher = {Gauthier-Villars},
title = {Proto-differentiability of set-valued mappings and its applications in optimization},
url = {http://eudml.org/doc/78207},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Rockafellar, R. T.
TI - Proto-differentiability of set-valued mappings and its applications in optimization
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 449
EP - 482
LA - eng
KW - semi-differentiability; Lipschitz properties; perturbations of constraints; set convergence; nonsmooth analysis; Proto- differentiability; set-valued mapping; parametrized variational inequality; optimality conditions
UR - http://eudml.org/doc/78207
ER -

References

top
  1. 1. J.P. Aubin, -Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions", Mathematical Analysis and Applications, Part A; Advances in Math. Supplementary Studies, Vol. 7A (Academic Press. 1981), 159-229. Zbl0484.47034MR634239
  2. 2. J.P. Aubin, "Lipschitz behavior of solutions to convex minimization problems", Math. of Op. Research9(1984), 87-111. Zbl0539.90085MR736641
  3. 3. J.P. Aubin and I., Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, 1984. Zbl0641.47066MR749753
  4. 4. J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984. Zbl0538.34007MR755330
  5. 5. H. Frankowska, "Inclusions adjointes associées aux trajectoires minimales d'inclusions différentielles", C.R. Acad. Sc. Paris297(1983), 461-464. Zbl0532.49024MR736244
  6. 6. H. Frankowska, "Adjoint differential inclusions in necessary conditions for the minimal trajectories of differential inclusions" , Ann. Inst. H. Poincaré: Analyse Non Linéaire2(1985), 75-99. Zbl0576.49013MR794001
  7. 7. H. Frankowska, "Local controllability and infinitesimal generators of semigroups of set-valued maps", SIAM J. Control Opt.25(1987). 412-432. Zbl0625.49015MR877070
  8. 8. F.H. Clarke. "Generalized gradients and applications", Trans. Amer. Math. Soc.205(1975), 247-262. Zbl0307.26012MR367131
  9. 9. F.H. Clarke, Nonsmooth Analysis and Optimization, Wiley-Interscience, 1983. Zbl0582.49001MR709590
  10. 10. R.T. Rockafellar, "First and second-order epi-differentiability in nonlinear programming", Trans. Amer. Math. Soc., to appear. Zbl0655.49010MR936806
  11. 11. R.T. Rockafellar, "Maximal monotone relations and the second derivatives of nons-mooth functions", Ann. Inst. H. Poincaré: Analyse Non Linéaire2(1985), 167-184. Zbl0581.49009MR797269
  12. 12. R.T. Rockafellar, -"Generalized second derivatives of convex functions and saddle functions", forthcoming. Zbl0712.49011MR1031242
  13. 13. G. Bouligand, Introduction à la Géométrie Infuitesimale Directe, Gauthier-Villars, Paris. 1932. Zbl0005.37501JFM58.0086.03
  14. 14. A. Shapiro, -Second-order sensitivity anlysis and asymptotic theory of parameterized nonlinear programs", Math. Prog.33(1985), 280-299. Zbl0579.90088MR816106
  15. 15. R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970. Zbl0193.18401MR274683
  16. 16. R.T. Rockafellar, -Lipschitzian properties of multifunctions", Nonlin. Anal. Th. Math. Appl.9(1985), 867-885. Zbl0573.54011MR799890
  17. 17. S.M. Robinson, "Generalized equations and their solution, part I: basic theory". Math. Programming Study10(1979). 128-141. Zbl0404.90093MR527064
  18. 18. S.M. Robinson, "Generalized equations and their solutions, part II: applications to nonlinear programming", Math. Programming Study19(1982), 200-221. Zbl0495.90077MR669732
  19. 19. S.M. Robinson, "Some continuity properties of polyhedral multifunctions", Math. Programming Study14(1981), 206-214. Zbl0449.90090MR600130
  20. 20. C. Ursescu, "Tangent sets' calculus and necessary conditions for extremality", SIAM J. Control Opt.20(1982), 563-574. Zbl0488.49009MR661033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.