Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 2, page 305-342
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNovotný, Antonín. "Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method." Commentationes Mathematicae Universitatis Carolinae 37.2 (1996): 305-342. <http://eudml.org/doc/247928>.
@article{Novotný1996,
abstract = {In [18]–[19], P.L. Lions studied (among others) the compactness and regularity of weak solutions to steady compressible Navier-Stokes equations in the isentropic regime with arbitrary large external data, in particular, in bounded domains. Here we investigate the same problem, combining his ideas with the method of decomposition proposed by Padula and myself in [29]. We find the compactness of the incompressible part $u$ of the velocity field $v$ and we give a new proof of the compactness of the “effective pressure” $\{\mathcal \{P\}\} = \rho ^\gamma - (2\mu _1 +\mu _2) \operatorname\{div\} v$. We derive some new estimates of these quantities in Hardy and Triebel-Lizorkin spaces.},
author = {Novotný, Antonín},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {steady compressible Navier-Stokes equations; Poisson-Stokes equations; weak solutions; global existence of weak solutions; div-curl lemma; Hardy spaces; Triebel-Lizorkin spaces; Poisson-Stokes equations; weak solutions; global existence of weak solutions; div-curl lemma; Hardy spaces; Triebel-Lizorkin spaces},
language = {eng},
number = {2},
pages = {305-342},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method},
url = {http://eudml.org/doc/247928},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Novotný, Antonín
TI - Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 2
SP - 305
EP - 342
AB - In [18]–[19], P.L. Lions studied (among others) the compactness and regularity of weak solutions to steady compressible Navier-Stokes equations in the isentropic regime with arbitrary large external data, in particular, in bounded domains. Here we investigate the same problem, combining his ideas with the method of decomposition proposed by Padula and myself in [29]. We find the compactness of the incompressible part $u$ of the velocity field $v$ and we give a new proof of the compactness of the “effective pressure” ${\mathcal {P}} = \rho ^\gamma - (2\mu _1 +\mu _2) \operatorname{div} v$. We derive some new estimates of these quantities in Hardy and Triebel-Lizorkin spaces.
LA - eng
KW - steady compressible Navier-Stokes equations; Poisson-Stokes equations; weak solutions; global existence of weak solutions; div-curl lemma; Hardy spaces; Triebel-Lizorkin spaces; Poisson-Stokes equations; weak solutions; global existence of weak solutions; div-curl lemma; Hardy spaces; Triebel-Lizorkin spaces
UR - http://eudml.org/doc/247928
ER -
References
top- Adams R.A., Sobolev spaces, Academic Press, 1975. MR0450957
- Beirao da Veiga H., An -theory for the -dimensional stationary compressible Navier- Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions, Comm. Math. Phys. 109 (1987), 229-248. (1987) MR0880415
- Bogovskij M.E., Solutions of some problems of vector analysis with the operators div and grad, Trudy Sem. S.L. Soboleva (1980), 5-41. (1980)
- Cattabriga L., Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova 31 (1961), 308-340. (1961) Zbl0116.18002MR0138894
- Coifman R., Lions P.L., Meyer Y., Semmes S., Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. (1993) Zbl0864.42009MR1225511
- Di Perna R.J., Lions P.L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547. (1989) MR1022305
- Farwig R., Stationary solutions of the Navier-Stokes equations for a compressible viscous and heat-conductive fluid, preprint, Univ. Bonn, 1988.
- Farwig R., Stationary solutions of the Navier-Stokes equations with slip boundary conditions, Comm. Part. Diff. Eqs. 14 (1989), 1579-1606. (1989) MR1026775
- Galdi G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, Springer, 1994. Zbl0949.35005MR1284205
- Galdi G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. II, Springer, 1994. Zbl0949.35005MR1284206
- Galdi G.P., Novotný A., Padula M., About steady compressible flows in 2D exterior domains, Pacif. Journal Math., in press.
- Grubb G., Kokholm N.J, Parameter dependent pseudodifferential boundary value problems in anisotropic Sobolev spaces with applications to Navier-Stokes problem, Acta. Math., in press.
- Grubb G., Pseudodifferential boundary value problems in -spaces, Comm. Part. Diff. Eq. 15 (1990), 289-340. (1990)
- Johnsen J.E., The stationary Navier-Stokes equations in -spaces, Ph.D. Theses, Math. Inst. Copenhagen, 1993.
- Kufner A., Fučík S., John O., Function Spaces, Academia, Prague, 1977. MR0482102
- Leray J., Etudes de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82. (1933)
- Leray J., Sur le mouvement d'une liquide visqueux emplisant l'espace, Acta Math. 63 (1934), 193-248. (1934) MR1555394
- Lions P.L., Compacité des solutions des équations de Navier-Stokes compressibles isentropiques, C.R. Acad. Sci. Paris 317 (Serie I) (1993), 115-120. (1993) Zbl0781.76072MR1228976
- Lions P.L., Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques, C.R. Acad. Sci. Paris 316 (Serie I) (1993), 1335-1340. (1993) Zbl0778.76086MR1226126
- Lions P.L., Private communication, .
- Lions J.L., Quelques méthodes de resolution des problemes aux limites nonlinéaires, Mir, 1972 (in Russian), French original: Dunod, 1969.
- Matsumura A., Nishida T., Exterior stationary problems for the equations of motion of compressible viscous and heat-conductive fluids, Proc. EQUADIFF 89, eds. Dafermos C.M., Ladas G., Papanicolau G., Dekker publ., 1989, pp. 473-479. Zbl0679.76076MR1021749
- Matsumura A., Nishida T., Exterior stationary problems for the equations of motion of compressible viscous and heat-conductive fluids, manuscript in Japanese. Zbl0679.76076
- Matsumura A., Nishida T., Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), 445-464. (1983) Zbl0543.76099MR0713680
- Novotný A., Steady flows of viscous compressible fluids - -approach, Proc. of EQUAM 92, eds. Salvi, Straskraba (1993) Stab. Appl. Anal. Cont. Media 3.3 (1993), 181-199. (1993) MR1245633
- Novotný A., Steady flows of viscous compressible fluids in exterior domains under small perturbations of great potential forces, Math. Model. Meth. Appl. Sci. 3.6 (1993), 725-757. (1993) MR1245633
- Novotný A., Compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method (the whole ), Proc. Symposium Navier-Stokes equations. Theory, numerical analysis and applications, Oberwolfach 1994, eds. Heywood J., Masuda K., Rautmann R., Solonnikov V.A., in press.
- Nazarov S., Novotný A., Pileckas K., On steady compressible Navier-Stokes equations in plane domains with corners, Math. Annalen 304.1 (1996), 121-150. (1996) MR1367886
- Novotný A., Padula M., -approach to steady flows of viscous compressible fluids in exterior domains, preprint, Univ. Ferrara, 1992; Arch. Rat. Mech. Anal. 126 (1994), 243-297. (1994) MR1293786
- Novotný A., Padula M., Physically reasonable solutions to steady compressible Navier- Stokes equations in 3D-exterior domains II , J. Math. Kyoto Univ., in press.
- Novotný A., Padula M., Physically reasonable solutions to steady compressible Navier- Stokes equations in 3D-exterior domains I , preprint, Univ. Toulon, 1994. MR1293786
- Novotný A., Padula M., On the decay at infinity of steady flow of viscous gas in an exterior domain I , preprint, Univ. Toulon, 1994.
- Novotný A., Padula M., Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces, Sib. Math. J. 34 (1991), 120-146. (1991) MR1255466
- Novotný A., Padula M., Penel P., A remark on the well possedness of the problem of a steady flow of a viscous barotropic gas in a pipe, Comm. Part. Diff. Eq. 21.1-2 (1996), 23-35. (1996) MR1373763
- Novotný A., Penel P., -approach for steady flows of viscous compressible heat conductive gas, , in press.
- Novotný A., Penel P., About the incompressible limit of steady compressible Navier-Stokes equations in exterior domains, preprint, Univ. Toulon, 1995.
- Padula M., On the uniqueness of viscous compressible flows, Proc. IV. Symposium - Trends in Applications of Pure Mathematics to Mechanics, editor Brilla E., Pitman, 1981.
- Padula M., Existence and uniqueness for viscous steady compressible motions, Proc. Sem. Fis. Mat., Trieste, Dinamica dei fluidi e dei gaz ionizzati, 1982. Zbl0644.76086
- Padula M., Existence and uniqueness for viscous steady compressible motions, Arch. Rat. Mech. Anal. 77 (1987), 89-102. (1987) Zbl0644.76086MR0860302
- Padula M., A representation formula for steady solutions of a compressible fluid moving at low speed, Transp. Th. Stat. Phys. 21 593-613. MR1194463
- Padula M., On the exterior steady problem for the equations of a viscous isothermal gas, Proc. EVEQ 92, Prague, eds. John O., Stará J., Comm. Math. Univ. Carolinae 34 (1993), 275-293. Zbl0778.76087MR1241737
- Padula M., Existence of global solutions for 2-dimensional viscous compressible flow, J. Funct. Anal. 69 (1986), 1-20. (1986) MR0864756
- Padula M., Erratum, J. Funct. Anal. 76 (1988), 231. (1988) Zbl0641.76015MR0923054
- Padula M., Erratum, J. Funct. Anal. 77 (1988), 232. (1988) Zbl0641.76015MR0930400
- Padula M., Pileckas K., Steady flows of viscous ideal gas in domains with noncompact boundaries: existence and asymptotic behaviour in a pipe, to appear.
- Pileckas K., Zajaczkowski W.M., On the free boundary problem for stationary compressible Navier-Stokes equations, Comm. Math. Phys. 129 (1990), 169-204. (1990) MR1046283
- Solonnikov V.A., About the solvability of the initial boundary value problem for the viscous compressible fluid (in Russian), .
- Solonnikov V.A., Tani A., Free boundary value problem for a viscous compressible flow with the surface tension, An Int. Tribute, World Sci. Publ. Singapore (1991), pp. 1270-1303.
- Stein E., Harmonic Analysis, Princeton Univ. Press, 1993. Zbl1106.42300MR1232192
- Šverák V., Nonlinear equations and weak convergence, Proc. of 14th Conference on PDEs, Hřensko, 1989, pp. 103-146 (in Czech).
- Tani A., On the free boundary value problem for compressible viscous fluid motion, J. Math. Kyoto Univ. 21.4 (1981), 839-859. (1981) Zbl0499.76061MR0637520
- Tani A., Two phase free boundary value problem for compressible viscous fluid motion, J. Math. Kyoto Univ. 24.2 (1984), 243-267. (1984) MR0751700
- Temam R., Navier Stokes Equations, Mir, 1981 (in Russian), English original North Holland, 1979. Zbl1157.35333MR0603444
- Triebel H., Theory of Functional Spaces, Birkhauser, 1983.
- Valli A., On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. H. Poincaré 4 (1987), 99-113. (1987) Zbl0627.76080MR0877992
- Valli A., Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Sc. Norm. Sup. Pisa 4 (1983), 607-647. (1983) Zbl0542.35062MR0753158
- Valli A., Zajaczkowski W.M., Navier-Stokes equations for compressible fluids: global existence and qualitative properties of solutions in the general case, Comm. Math. Phys. 103 (1989), 259-296. (1989) MR0826865
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.