Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method

Antonín Novotný

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 2, page 305-342
  • ISSN: 0010-2628

Abstract

top
In [18]–[19], P.L. Lions studied (among others) the compactness and regularity of weak solutions to steady compressible Navier-Stokes equations in the isentropic regime with arbitrary large external data, in particular, in bounded domains. Here we investigate the same problem, combining his ideas with the method of decomposition proposed by Padula and myself in [29]. We find the compactness of the incompressible part u of the velocity field v and we give a new proof of the compactness of the “effective pressure” 𝒫 = ρ γ - ( 2 μ 1 + μ 2 ) div v . We derive some new estimates of these quantities in Hardy and Triebel-Lizorkin spaces.

How to cite

top

Novotný, Antonín. "Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method." Commentationes Mathematicae Universitatis Carolinae 37.2 (1996): 305-342. <http://eudml.org/doc/247928>.

@article{Novotný1996,
abstract = {In [18]–[19], P.L. Lions studied (among others) the compactness and regularity of weak solutions to steady compressible Navier-Stokes equations in the isentropic regime with arbitrary large external data, in particular, in bounded domains. Here we investigate the same problem, combining his ideas with the method of decomposition proposed by Padula and myself in [29]. We find the compactness of the incompressible part $u$ of the velocity field $v$ and we give a new proof of the compactness of the “effective pressure” $\{\mathcal \{P\}\} = \rho ^\gamma - (2\mu _1 +\mu _2) \operatorname\{div\} v$. We derive some new estimates of these quantities in Hardy and Triebel-Lizorkin spaces.},
author = {Novotný, Antonín},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {steady compressible Navier-Stokes equations; Poisson-Stokes equations; weak solutions; global existence of weak solutions; div-curl lemma; Hardy spaces; Triebel-Lizorkin spaces; Poisson-Stokes equations; weak solutions; global existence of weak solutions; div-curl lemma; Hardy spaces; Triebel-Lizorkin spaces},
language = {eng},
number = {2},
pages = {305-342},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method},
url = {http://eudml.org/doc/247928},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Novotný, Antonín
TI - Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 2
SP - 305
EP - 342
AB - In [18]–[19], P.L. Lions studied (among others) the compactness and regularity of weak solutions to steady compressible Navier-Stokes equations in the isentropic regime with arbitrary large external data, in particular, in bounded domains. Here we investigate the same problem, combining his ideas with the method of decomposition proposed by Padula and myself in [29]. We find the compactness of the incompressible part $u$ of the velocity field $v$ and we give a new proof of the compactness of the “effective pressure” ${\mathcal {P}} = \rho ^\gamma - (2\mu _1 +\mu _2) \operatorname{div} v$. We derive some new estimates of these quantities in Hardy and Triebel-Lizorkin spaces.
LA - eng
KW - steady compressible Navier-Stokes equations; Poisson-Stokes equations; weak solutions; global existence of weak solutions; div-curl lemma; Hardy spaces; Triebel-Lizorkin spaces; Poisson-Stokes equations; weak solutions; global existence of weak solutions; div-curl lemma; Hardy spaces; Triebel-Lizorkin spaces
UR - http://eudml.org/doc/247928
ER -

References

top
  1. Adams R.A., Sobolev spaces, Academic Press, 1975. MR0450957
  2. Beirao da Veiga H., An L p -theory for the n -dimensional stationary compressible Navier- Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions, Comm. Math. Phys. 109 (1987), 229-248. (1987) MR0880415
  3. Bogovskij M.E., Solutions of some problems of vector analysis with the operators div and grad, Trudy Sem. S.L. Soboleva (1980), 5-41. (1980) 
  4. Cattabriga L., Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova 31 (1961), 308-340. (1961) Zbl0116.18002MR0138894
  5. Coifman R., Lions P.L., Meyer Y., Semmes S., Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. (1993) Zbl0864.42009MR1225511
  6. Di Perna R.J., Lions P.L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547. (1989) MR1022305
  7. Farwig R., Stationary solutions of the Navier-Stokes equations for a compressible viscous and heat-conductive fluid, preprint, Univ. Bonn, 1988. 
  8. Farwig R., Stationary solutions of the Navier-Stokes equations with slip boundary conditions, Comm. Part. Diff. Eqs. 14 (1989), 1579-1606. (1989) MR1026775
  9. Galdi G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, Springer, 1994. Zbl0949.35005MR1284205
  10. Galdi G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. II, Springer, 1994. Zbl0949.35005MR1284206
  11. Galdi G.P., Novotný A., Padula M., About steady compressible flows in 2D exterior domains, Pacif. Journal Math., in press. 
  12. Grubb G., Kokholm N.J, Parameter dependent pseudodifferential boundary value problems in anisotropic L p Sobolev spaces with applications to Navier-Stokes problem, Acta. Math., in press. 
  13. Grubb G., Pseudodifferential boundary value problems in L p -spaces, Comm. Part. Diff. Eq. 15 (1990), 289-340. (1990) 
  14. Johnsen J.E., The stationary Navier-Stokes equations in L p -spaces, Ph.D. Theses, Math. Inst. Copenhagen, 1993. 
  15. Kufner A., Fučík S., John O., Function Spaces, Academia, Prague, 1977. MR0482102
  16. Leray J., Etudes de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82. (1933) 
  17. Leray J., Sur le mouvement d'une liquide visqueux emplisant l'espace, Acta Math. 63 (1934), 193-248. (1934) MR1555394
  18. Lions P.L., Compacité des solutions des équations de Navier-Stokes compressibles isentropiques, C.R. Acad. Sci. Paris 317 (Serie I) (1993), 115-120. (1993) Zbl0781.76072MR1228976
  19. Lions P.L., Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques, C.R. Acad. Sci. Paris 316 (Serie I) (1993), 1335-1340. (1993) Zbl0778.76086MR1226126
  20. Lions P.L., Private communication, . 
  21. Lions J.L., Quelques méthodes de resolution des problemes aux limites nonlinéaires, Mir, 1972 (in Russian), French original: Dunod, 1969. 
  22. Matsumura A., Nishida T., Exterior stationary problems for the equations of motion of compressible viscous and heat-conductive fluids, Proc. EQUADIFF 89, eds. Dafermos C.M., Ladas G., Papanicolau G., Dekker publ., 1989, pp. 473-479. Zbl0679.76076MR1021749
  23. Matsumura A., Nishida T., Exterior stationary problems for the equations of motion of compressible viscous and heat-conductive fluids, manuscript in Japanese. Zbl0679.76076
  24. Matsumura A., Nishida T., Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89 (1983), 445-464. (1983) Zbl0543.76099MR0713680
  25. Novotný A., Steady flows of viscous compressible fluids - L 2 -approach, Proc. of EQUAM 92, eds. Salvi, Straskraba (1993) Stab. Appl. Anal. Cont. Media 3.3 (1993), 181-199. (1993) MR1245633
  26. Novotný A., Steady flows of viscous compressible fluids in exterior domains under small perturbations of great potential forces, Math. Model. Meth. Appl. Sci. 3.6 (1993), 725-757. (1993) MR1245633
  27. Novotný A., Compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method (the whole 3 ), Proc. Symposium Navier-Stokes equations. Theory, numerical analysis and applications, Oberwolfach 1994, eds. Heywood J., Masuda K., Rautmann R., Solonnikov V.A., in press. 
  28. Nazarov S., Novotný A., Pileckas K., On steady compressible Navier-Stokes equations in plane domains with corners, Math. Annalen 304.1 (1996), 121-150. (1996) MR1367886
  29. Novotný A., Padula M., L p -approach to steady flows of viscous compressible fluids in exterior domains, preprint, Univ. Ferrara, 1992; Arch. Rat. Mech. Anal. 126 (1994), 243-297. (1994) MR1293786
  30. Novotný A., Padula M., Physically reasonable solutions to steady compressible Navier- Stokes equations in 3D-exterior domains II ( v = 0 ) , J. Math. Kyoto Univ., in press. 
  31. Novotný A., Padula M., Physically reasonable solutions to steady compressible Navier- Stokes equations in 3D-exterior domains I ( v 0 ) , preprint, Univ. Toulon, 1994. MR1293786
  32. Novotný A., Padula M., On the decay at infinity of steady flow of viscous gas in an exterior domain I ( v = 0 ) , preprint, Univ. Toulon, 1994. 
  33. Novotný A., Padula M., Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces, Sib. Math. J. 34 (1991), 120-146. (1991) MR1255466
  34. Novotný A., Padula M., Penel P., A remark on the well possedness of the problem of a steady flow of a viscous barotropic gas in a pipe, Comm. Part. Diff. Eq. 21.1-2 (1996), 23-35. (1996) MR1373763
  35. Novotný A., Penel P., L p -approach for steady flows of viscous compressible heat conductive gas, , in press. 
  36. Novotný A., Penel P., About the incompressible limit of steady compressible Navier-Stokes equations in exterior domains, preprint, Univ. Toulon, 1995. 
  37. Padula M., On the uniqueness of viscous compressible flows, Proc. IV. Symposium - Trends in Applications of Pure Mathematics to Mechanics, editor Brilla E., Pitman, 1981. 
  38. Padula M., Existence and uniqueness for viscous steady compressible motions, Proc. Sem. Fis. Mat., Trieste, Dinamica dei fluidi e dei gaz ionizzati, 1982. Zbl0644.76086
  39. Padula M., Existence and uniqueness for viscous steady compressible motions, Arch. Rat. Mech. Anal. 77 (1987), 89-102. (1987) Zbl0644.76086MR0860302
  40. Padula M., A representation formula for steady solutions of a compressible fluid moving at low speed, Transp. Th. Stat. Phys. 21 593-613. MR1194463
  41. Padula M., On the exterior steady problem for the equations of a viscous isothermal gas, Proc. EVEQ 92, Prague, eds. John O., Stará J., Comm. Math. Univ. Carolinae 34 (1993), 275-293. Zbl0778.76087MR1241737
  42. Padula M., Existence of global solutions for 2-dimensional viscous compressible flow, J. Funct. Anal. 69 (1986), 1-20. (1986) MR0864756
  43. Padula M., Erratum, J. Funct. Anal. 76 (1988), 231. (1988) Zbl0641.76015MR0923054
  44. Padula M., Erratum, J. Funct. Anal. 77 (1988), 232. (1988) Zbl0641.76015MR0930400
  45. Padula M., Pileckas K., Steady flows of viscous ideal gas in domains with noncompact boundaries: existence and asymptotic behaviour in a pipe, to appear. 
  46. Pileckas K., Zajaczkowski W.M., On the free boundary problem for stationary compressible Navier-Stokes equations, Comm. Math. Phys. 129 (1990), 169-204. (1990) MR1046283
  47. Solonnikov V.A., About the solvability of the initial boundary value problem for the viscous compressible fluid (in Russian), . 
  48. Solonnikov V.A., Tani A., Free boundary value problem for a viscous compressible flow with the surface tension, An Int. Tribute, World Sci. Publ. Singapore (1991), pp. 1270-1303. 
  49. Stein E., Harmonic Analysis, Princeton Univ. Press, 1993. Zbl1106.42300MR1232192
  50. Šverák V., Nonlinear equations and weak convergence, Proc. of 14th Conference on PDEs, Hřensko, 1989, pp. 103-146 (in Czech). 
  51. Tani A., On the free boundary value problem for compressible viscous fluid motion, J. Math. Kyoto Univ. 21.4 (1981), 839-859. (1981) Zbl0499.76061MR0637520
  52. Tani A., Two phase free boundary value problem for compressible viscous fluid motion, J. Math. Kyoto Univ. 24.2 (1984), 243-267. (1984) MR0751700
  53. Temam R., Navier Stokes Equations, Mir, 1981 (in Russian), English original North Holland, 1979. Zbl1157.35333MR0603444
  54. Triebel H., Theory of Functional Spaces, Birkhauser, 1983. 
  55. Valli A., On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. H. Poincaré 4 (1987), 99-113. (1987) Zbl0627.76080MR0877992
  56. Valli A., Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Sc. Norm. Sup. Pisa 4 (1983), 607-647. (1983) Zbl0542.35062MR0753158
  57. Valli A., Zajaczkowski W.M., Navier-Stokes equations for compressible fluids: global existence and qualitative properties of solutions in the general case, Comm. Math. Phys. 103 (1989), 259-296. (1989) MR0826865

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.