Slice convergence : stabilité et optimisation dans les espaces non réflexifs
Khalid El Hajioui; Driss Mentagui
ESAIM: Control, Optimisation and Calculus of Variations (2004)
- Volume: 10, Issue: 4, page 505-525
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series. Pitman, London (1984). Zbl0561.49012MR773850
- [2] H. Attouch, D. Azé and R.J.-B. Wets, Convergence of convex-concave saddle functions; continuity properties of the Legendre-Fenchel transform with applications to convex programming and mechanics. Ann. Inst. Henri Poincaré 5 (1988) 537-572. Zbl0667.49009MR978671
- [3] H. Attouch and G. Beer, On the convergence of subdifferentials of convex functions. Arch. Math. 60 (1993) 389-400. Zbl0778.49018MR1206324
- [4] H. Attouch and H. Brezis, Duality for the sum of convex functions in general Banach spaces. Publications AVAMAC, Perpignan, 84-10. Av (1984).
- [5] H. Attouch and R.J.-B. Wets, Quantitative stability of variational systems: II. A framework for nonlinear conditionning. IIASA working paper (1988) 88-89.
- [6] H. Attouch and R. J. -B. Wets, Quantitative stability of variational systems: I. The epigraphical distance. Trans. Amer. Math. Soc. 328 (1991) 695-729. Zbl0753.49007MR1018570
- [7] D. Azé and J.-P. Penot, Operations on convergent families of sets and functions. Optimization 21 (1990) 521-534. Zbl0719.49013MR1069660
- [8] B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Nonlinear parametric optimization. Akademie Verlag (1982). Zbl0502.49002MR701243
- [9] G. Beer, Topologies on closed and closed convex sets and the Effros measurability of set valued functions, in Sém. d’Anal. Convexe, Montpellier (1991), exposé No. 2, 2.1-2.44. Zbl0824.46089
- [10] G. Beer, The slice topology: A viable alternative to Mosco convergence in nonreflexive spaces. Nonlinear. Anal. Theo. Meth. Appl. 19 (1992) 271-290. Zbl0786.46006MR1176063
- [11] G. Beer and J. Borwein, Mosco convergence and reflexivity. Proc. Amer. Math. Soc. 109 (1990) 427-436. Zbl0763.46006MR1012924
- [12] G. Beer and R. Lucchetti, Convex optimization and the epi-distance topology. Trans. Amer. Math. Soc. 327 (1991) 795-813. Zbl0681.46013MR1012526
- [13] G. Beer and R. Lucchetti, The epi-distance topology: Continuity and stability results with applications to convex optimization problems. Math. Oper. Res. 17 (1992) 715-726. Zbl0767.49011MR1177732
- [14] G. Beer and R. Lucchetti, Weak topologies for the closed subsets of a metrizable space. Trans. Amer. Math. Soc. 335 (1993) 805-822. Zbl0810.54011MR1094552
- [15] N. Bourbaki, Espaces vectoriels topologiques. Masson, Paris (1981). MR633754
- [16] H. Brezis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1983). Zbl0511.46001MR697382
- [17] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Lect. Notes Math. 580 (1977). Zbl0346.46038MR467310
- [18] J. Dieudonné, Sur la séparation des ensembles convexes. Math. Annal. 163 (1966) 1-3. Zbl0131.11401MR194865
- [19] S. Dolecki, G. Salinetti and R.J.-B. Wets, Convergence of functions: equi-semicontinuity. Trans. Amer. Math. Soc. 276 (1983) 409-429. Zbl0504.49006MR684518
- [20] A.L. Dontchev and T. Zolezzi, Well-posed optimization problems. Lect. Notes Math. 1543 (1993). Zbl0797.49001MR1239439
- [21] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels. Dunod, Paris (1974). Zbl0281.49001MR463993
- [22] K. El Hajioui, Convergences variationnelles: approximations inf-convolutives généralisées, stabilité et optimisation dans les espaces non réflexifs. Thèse de Doctorat, Université Ibn Tofail, Kénitra (2002).
- [23] K. El Hajioui et D. Mentagui, Sur la stabilité d’une convergence variationnelle dans les espaces de Banach généraux, en préparation. Zbl1086.49012
- [24] J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique. Publ. Univ. Princeton 13 (1902) 49-52.
- [25] J. Hadamard, Lectures on Cauchy’s problem in linear partial differential equations. Dover (1953). Zbl0049.34805
- [26] J.L. Joly, Une famille de topologies et de convergences sur l’ensemble des fonctionnelles convexes. Thèse Grenoble (1970).
- [27] G. Köthe, Topological vector spaces (I, II). Springer (1969, 1979). Zbl0179.17001MR248498
- [28] J. Lahrache, Stabilité et convergences dans les espaces non réflexifs, in Sém. d’Anal. Convexe Montpellier, exposé No. 10 (1991). Zbl0859.49011
- [29] P.J. Laurent, Approximation et optimisation. Hermann, Paris (1972). Zbl0238.90058MR467080
- [30] L. Mclinden and R.C. Bergstrom, Preservation of convergence of convex sets and functions in finite dimensions. Trans. Amer. Math. Soc. 286 (1981) 127-142. Zbl0468.90063MR628449
- [31] D. Mentagui, Inf-convolution polaire, stabilité de l’épi-convergence et estimation de la rapidité de convergence d’une suite de compacts. Thèse Rabat (1988).
- [32] D. Mentagui, Problèmes d’optimisation biens posés et convergences variationnelles. Théorie et applications dans le cadre de l’optimisation non différentiable. Thèse d’État, F.U.N.D.P., Namur (1996).
- [33] D. Mentagui, Caractérisation de la stabilité d’un problème de minimisation associé à une fonction de perturbation particulière. Pub. Inst. Math. 60 (1996) 65-74. Zbl1007.49023
- [34] D. Mentagui, Analyse de récession et résultats de stabilité d’une convergence variationnelle. Application à la théorie de la dualité en programmation mathématique. ESAIM: COCV 9 (2003) 297-315. Zbl1073.49006
- [35] D. Mentagui et K. El Hajioui, Convergences des fonctions convexes et approximations inf-convolutives généralisées. Publ. Inst. Math., Nouvelle série 86 (2002) 123-136. Zbl1086.49012MR1997618
- [36] J.J. Moreau, Fonctionnelles convexes. Sém. sur les E.D.P. collège de France, Paris (1967).
- [37] U. Mosco, Approximation of the solutions of some variational inequalities. Ann. Scuola Normale Sup. Pisa 21 (1967) 373-394. Zbl0184.36803MR226376
- [38] U. Mosco, On the continuity of the Young-Fenchel transform. J. Math. Anal. Appl. 25 (1971) 518-535. Zbl0253.46086MR283586
- [39] R. Phelps, Convex functions, monotone operators and differentiability. Lect. Notes Math. 1364 (1989). Zbl0658.46035MR984602
- [40] H. Radström, An imbedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3 (1952) 165-169. Zbl0046.33304MR45938
- [41] R.T. Rockafellar, Convex Analysis. Princeton Univ. Press (1970). Zbl0193.18401MR274683
- [42] R.T. Rockafellar and R.J.-B. Wets, Variational analysis. Springer (1998). Zbl0888.49001MR1491362
- [43] Y. Sonntag and C. Zalinescu, Set convergences: An attempt of classification, in Proc. of Intl. Conf. on Diff. Equations and Control theory, Iasi, Romania, August (1990) 199-226. Zbl0786.54013MR1173857
- [44] A.N. Tikhonov, Stability of inverse problems. Dokl. Akad. Nauk. USSR 39 (1943) 176-179. Zbl0061.23308MR9685
- [45] A.N. Tikhonov, Solution of incorrectly formulated problems and the regularization methods. Soviet Math. Dokl. 4 (1963) 1035-1038. Zbl0141.11001
- [46] A.N. Tikhonov, Methods for the regularization of optimal control problems. Soviet Math. Dokl. 6 (1965) 761-763. Zbl0144.12704
- [47] A.N. Tikhonov and V. Arsenine, Methods for solving ill-posed problems. Nauka (1986). MR857101
- [48] R.J.-B. Wets, A formula for the level sets of epi-limits and some applications, Mathematical theories of optimization, J.P. Cecconi and T. Zolezzi Eds., Lect. Notes Math. 983 (1983). Zbl0518.49008MR713816
- [49] R.A. Wijsman, Convergence of sequences of convex sets, cones and functions. Bull. Amer. Math. Soc. 70 (1964) 186-188. Zbl0121.39001MR157278
- [50] R.A. Wijsman, Convergence of sequences of convex sets, cones and functions II. Trans. Amer. Math. Soc. 123 (1966) 32-45. Zbl0146.18204MR196599
- [51] T. Zolezzi, On stability in mathematical programming. Math. Programming 21 (1984) 227-242. MR751252
- [52] T. Zolezzi, Continuity of generalized gradients and multipliers under perturbations. Math. Oper. Res. 10 (1985) 664-673. Zbl0583.49019MR812824
- [53] T. Zolezzi, Stability analysis in optimization. Lect. Notes Math. 1990 (1986) 397-419. Zbl0588.49016MR858360