An expression of classical dynamics

J.-J. Moreau

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: S6, page 1-48
  • ISSN: 0294-1449

How to cite

top

Moreau, J.-J.. "An expression of classical dynamics." Annales de l'I.H.P. Analyse non linéaire S6 (1989): 1-48. <http://eudml.org/doc/78195>.

@article{Moreau1989,
author = {Moreau, J.-J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Galilean time-space; four-dimensional vector distribution divergence of kinetic tensor measure; Riemannian manifold setting of analytical dynamics; differential operator equilibrium; transport by test flows; Euler variable viewpoint; symmetric tensor measure; subset of space-time; window; measure differential equations; non-smooth dynamics},
language = {eng},
pages = {1-48},
publisher = {Gauthier-Villars},
title = {An expression of classical dynamics},
url = {http://eudml.org/doc/78195},
volume = {S6},
year = {1989},
}

TY - JOUR
AU - Moreau, J.-J.
TI - An expression of classical dynamics
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - S6
SP - 1
EP - 48
LA - eng
KW - Galilean time-space; four-dimensional vector distribution divergence of kinetic tensor measure; Riemannian manifold setting of analytical dynamics; differential operator equilibrium; transport by test flows; Euler variable viewpoint; symmetric tensor measure; subset of space-time; window; measure differential equations; non-smooth dynamics
UR - http://eudml.org/doc/78195
ER -

References

top
  1. [1] Bedford, A., Hamilton's principle in continuum mechanics, Research Notes in Math., N° 139, Pitman, Boston, London, Melbourne, 1985. Zbl0577.73001
  2. [2] Buttazzo, G. and D. Percivale, On the approximation of the elastic bounce problem on Riemannian manifolds, J. Diff. Equations, 47 (1983), 227-245. Zbl0498.58011MR688104
  3. [3] Fremont, M., Contact with adhesion, in: Topics in Nonsmooth Mechanics (Ed. J.J. Moreau, P.D. Panagiotopoulos and G. Strang), Birkhäuser, Basel, 1988. Zbl0669.73079MR957090
  4. [4] Giusti, E., Minimal surfaces and functions of bounded variation, Birkhäuser, Boston, Basel, Stuttgart, 1984. Zbl0545.49018MR775682
  5. [S] Lichnerowicz, A., Propagateurs et commutateurs en Relativité Générale, Institut des Hautes Etudes Scientifiques, Publications Mathématiques, N° 10, 1961. Zbl0098.42607MR158726
  6. [6] Lichnerowicz, A., Théorie des rayons en hydrodynamique et magnétohydrodynamique relativistes, Ann. Inst. Henri Poincaré, Sect.A, 7 (1967), 271-302. 
  7. [7] Marsden, J.E. and T.J.R. Hughes, Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, N.J., 1983. Zbl0545.73031
  8. [8] Monteiro Marques, M.D.P., Chocs inélastiques standards: un résultat d'existence, Travaux du Séminaire d'Analyse Convexe, Univ. des Sci. et Techniques du Languedoc, vol. 15, exposé n° 4, Montpellier, 1985. Zbl0619.73116
  9. [9] Monteiro Marques, M.D.P., Inclusöes Diferenciais e Choques Inelásticos, Doctoral Dissertation, Faculty of Sciences, University of Lisbon, 1988. 
  10. [10] Moreau, J.J., Fluid dynamics and the calculus of horizontal variations, Int. J. Engng. Sci., 20 (1982), 389-411. Zbl0479.76080MR644052
  11. [11] Moreau, J.J., Le transport d'une mesure vectorielle par un f luide et le théorème de Kelvin-Helmholtz, Rev. Roum. Math. Pures et Appl., 27 (1982), 375-383. Zbl0514.76045MR669489
  12. [12] Moreau, J.J., Liaisons unilatérales sans frottement et chocs inélastiques, C.R. Acad.Sci.Paris, Sér.II, 296 (1983), 1473-1476. Zbl0517.70018MR721066
  13. [13] Moreau, J.J., Variational properties of stationary inviscid Incompressible flows with possible abrupt inhomogeneity or free surface, I nt. J. Engng. Sci., 23 (1985), 461-481. Zbl0608.76021MR789154
  14. [14] Moreau, J.J., Une formulation de la Dynamique Classique, C.R. Acad.Sci.Paris, Sér.II, 304 (1987), 191-194. Zbl0607.70017MR977599
  15. [ 15] Moreau, J.J., Free boundaries and non-smooth solutions to some field equations: varlational characterization through the transport method, In: (J. P. ZOLESIO, ed.) Proceedings of the IFIP WG 8.2 Working Conference on Boundary Control and Boundary Variations, Springer-Verlag, 1988. Zbl0664.58003MR942456
  16. [16] Mdreau, J.J., Bounded variation in time, In: Topics in Nonsmooth Mechanics (Ed. J.J. Moreau, P.D. Panagiotopoulos and G. Strang), Birkhäuser, Basel, 1988. Zbl0657.28008MR957087
  17. [17] Moreau, J.J., Unilateral contact and dry friction in finite freedom dynamics, in: Non-smooth Mechanics and Applications (Ed. J.J. Moreau and P.D. Panaglotopoulos), CISM Courses and Lectures, Springer-Verlag, Wien, 1988. Zbl0703.73070
  18. [18] Pandit, S.G. and Deo, S.G., Differential system involving impulses, Lecture Notes in Math., vol.954, Springer-Verlag, Berlin, Heidelberg, New York, 1982. Zbl0539.34001MR674119
  19. [19] Percivale, D., Uniqueness in the elastic bounce problem, J. Diff. Equations, 56 (1985), 206-215. Zbl0521.73006MR774163
  20. [20] Rham, G. de, Variétés Différentiables, Hermann, Paris, 1955. Zbl0065.32401
  21. [21] Schatzman, M., A class of nonlinear differential equations of second order in time, J. Nonlinear Analysis, Theory, Methods and Appl., 2 (1978), 355-373. Zbl0382.34003MR512664
  22. [22] Vol'pert, A.I. and S.I. Hudjaev, Analysis in classes of discontinuous functions and equations of Mathematical Physics, Martinus Nijhoff Pub., Dordrecht, Boston, Lancaster, 1985. Zbl0564.46025MR785938

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.