Regularity of minimizers for a class of membrane energies

Emilio Acerbi; Irene Fonseca; Nicola Fusco[1]

  • [1] Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 1-2, page 11-25
  • ISSN: 0391-173X

How to cite

top

Acerbi, Emilio, Fonseca, Irene, and Fusco, Nicola. "Regularity of minimizers for a class of membrane energies." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 11-25. <http://eudml.org/doc/84280>.

@article{Acerbi1997,
affiliation = {Dipartimento di Matematica e Applicazioni Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy;},
author = {Acerbi, Emilio, Fonseca, Irene, Fusco, Nicola},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {SBV; functions of special bounded variation; Mumford-Shah functional; regularity; free discontinuity sets; local minimizers},
language = {eng},
number = {1-2},
pages = {11-25},
publisher = {Scuola normale superiore},
title = {Regularity of minimizers for a class of membrane energies},
url = {http://eudml.org/doc/84280},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Acerbi, Emilio
AU - Fonseca, Irene
AU - Fusco, Nicola
TI - Regularity of minimizers for a class of membrane energies
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 11
EP - 25
LA - eng
KW - SBV; functions of special bounded variation; Mumford-Shah functional; regularity; free discontinuity sets; local minimizers
UR - http://eudml.org/doc/84280
ER -

References

top
  1. [1] E. Acerbi - I. Fonseca - N. Fusco, Regularity results for equilibria in a variational model for fracture, to appear in Proc. R. Soc. Edin. Zbl0895.73080MR1475635
  2. [2] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital. B3 (1989), 857-881. Zbl0767.49001MR1032614
  3. [3] L. Ambrosio, A new proof of the SBV compactness theorem, Calc. Var.3 (1995), 127-137. Zbl0837.49011MR1384840
  4. [4] L. Ambrosio, On the lower semicontinuity of quasiconvex integrals in S B V (Ω, Rk), Nonlinear Anal., 23 (1994), 405-425. Zbl0817.49017
  5. [5] L. Ambrosio - N. Fusco - D. Pallara, Partial regularity of free discontinuity sets II, Ann. Scuola Norm. Sup. Pisa Cl. Sci.24 (1997) 39-62. Zbl0896.49024MR1475772
  6. [6] L. Ambrosio - D. Pallara, Partial regularity of free discontinuity sets I., Ann. Scuola Norm. Sup. Pisa Cl. Sci.24 (1997), 1-38. Zbl0896.49023MR1475771
  7. [7] K. Bhattacharya - R. James, in preparation. 
  8. [8] P. Bauman - N.C. Owen - D. Phillips, Maximum principles and apriori estimates for a class of problems from nonlinear elasticity, Ann. Inst. H. Poincaré8 (1991), 119-157. Zbl0733.35015MR1096601
  9. [9] A. Blake - A. Zissermann, "Visual Reconstruction", The MIT Press, Cambridge, Massachussets, 1985. MR919733
  10. [10] A. Bonnet, On the regularity of edges in the Mumford-Shah model for image segmentation, Ann. Inst. H. Poincaré, Anal. Non Linéaire13 (1996), 485-528. Zbl0883.49004MR1404319
  11. [11] M. Carriero - A. Leaci, Sk-valued maps minimizing the Lp norm of the gradient with free discontinuities, Ann. Scuola Norm. Sup. Pisa Cl. Sci.18 (1991), 321-352. Zbl0753.49018MR1145314
  12. [12] P.G. Ciarlet - P. Destuynder, A justification of a nonlinear model in plate theory, Comput. Methods Appl. Mech. Engrg.17/18 (1979), 227-258. Zbl0405.73050MR533827
  13. [13] G. David - S. Semmes, On the singular set of minimizers of the Mumford-Shah functional, J. Math. Pures et Appl.75 (1996), 299-342. Zbl0853.49010MR1411155
  14. [14] E. De Giorgi, Free Discontinuity Problems in the Calculus of Variations, a collection of papers dedicated to J. L. Lions on the occasion of his 60th birthday, North Holland (R. Dautray ed. ), 1991. Zbl0758.49002MR1110593
  15. [15] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.82 (1988), 199-210. Zbl0715.49014MR1152641
  16. [16] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
  17. [17] M. Dougherty, Higher integrability of the gradient for minimizers of certain polyconvex functionals in the calculus of variations, preprint. 
  18. [18] I. Fonseca - G. Francofort, Relaxation in B V versus quasiconvexification in W1,p; a model for the interaction between fracture and damage, Calc. Var.3 (1995), 407-446. Zbl0847.73077MR1385294
  19. [19] I. Fonseca - G. Francofort, Optimal design problems in elastic membranes, to appear. 
  20. [20] I. Fonseca - N. Fusco, Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa Cl. Sci.24 (1997), 463-499. Zbl0899.49018MR1612389
  21. [21] M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems", Annals of Mathematics Studies, Princeton University Press, 1983. Zbl0516.49003MR717034
  22. [22] D. Gilbarg - N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order", Springer, Berlin, 1983. Zbl0562.35001MR737190
  23. [23] H. Le Dret - A. Raoult, The nonlinear membrane model as variational limit ofnonlinear three-dimensional elasticity, J. Math. Pures et Appl.74 (1995), 549-578. Zbl0847.73025MR1365259
  24. [24] C.B. Morrey, "Multiple integrals in the Calculus of Variations", Springer, Berlin1966. Zbl0142.38701
  25. [25] D. Mumford - J. Shah, Boundary detection by minimizing functionals, Proc. IEEE Conf. on "Computer Vision and Pattern Recognition", San Francisco, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.