Oscillations non linéaires des systèmes hyperboliques : méthodes et résultats qualitatifs

Denis Serre

Annales de l'I.H.P. Analyse non linéaire (1991)

  • Volume: 8, Issue: 3-4, page 351-417
  • ISSN: 0294-1449

How to cite

top

Serre, Denis. "Oscillations non linéaires des systèmes hyperboliques : méthodes et résultats qualitatifs." Annales de l'I.H.P. Analyse non linéaire 8.3-4 (1991): 351-417. <http://eudml.org/doc/78258>.

@article{Serre1991,
author = {Serre, Denis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear oscillations; oscillating sequence of initial data},
language = {fre},
number = {3-4},
pages = {351-417},
publisher = {Gauthier-Villars},
title = {Oscillations non linéaires des systèmes hyperboliques : méthodes et résultats qualitatifs},
url = {http://eudml.org/doc/78258},
volume = {8},
year = {1991},
}

TY - JOUR
AU - Serre, Denis
TI - Oscillations non linéaires des systèmes hyperboliques : méthodes et résultats qualitatifs
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 3-4
SP - 351
EP - 417
LA - fre
KW - nonlinear oscillations; oscillating sequence of initial data
UR - http://eudml.org/doc/78258
ER -

References

top
  1. [1] J.M. Ball, Constitutive Inequalities and Existence Theorems in Non-Linear Elastostatics. Nonlinear Analysis and Mechanics. Herriot-Watt Symposium, Edinburgh, vol. I, 1976, p. 187-241, KNOPS éd., Pitman. Zbl0377.73043MR478899
  2. [2] M. Bonnefille, Thèse, Saint-Étienne, France, 1987. 
  3. [3] M. Bonnefille, Propagation des oscillations dans deux classes de systèmes hyperboliques (2 × 2 et 3 × 3), Comm. in PDEs, vol. 13, 1988, p. 905-925. Zbl0649.35058MR944435
  4. [4] K.N. Chueh, C.C. Conley et J.A. Smoller, Positively Invariant Regions for Systems of Nonlinear Diffusion Equations, Indiana Univ. Math. J., vol. 26, 1977, p. 373-392. Zbl0368.35040MR430536
  5. [5] B.D. Coleman et E.H. Dill, Z. Angew. Math. Phys., vol. 22, 1971, p. 691-702. Zbl0218.35072
  6. [6] C. Dafermos, Estimates for Conservation Laws with Little Viscosity, S.I.A.M. J. Math. Anal., vol. 18, 1987. Zbl0655.35055MR876280
  7. [7] R.J. Diperna, Uniqueness of Solutions to Hyperbolic Systems of Conservation Laws, Indiana Univ. Math. J., vol. 28, 1979, p. 137-188. Zbl0409.35057MR523630
  8. [8] R.J. Diperna, Convergence of Approximate Solutions to Conservation Laws, Arch Rat. Mech. Anal., vol. 82, 1983, p. 27-70. Zbl0519.35054MR684413
  9. [9] R.J. Diperna, Measured-Valued Solutions to Conservation Laws, Arch. Rat. Mech. Anal., vol. 88, 1985, p. 223-270. Zbl0616.35055MR775191
  10. [10] H.G. Gilquin, Glimm's Scheme and Conservation Laws of Mixed Type, S.I.A.M. J.Sci. Stat. Comput., vol. 10, 1989, p. 133-153. Zbl0668.73017MR976167
  11. [11] H.G. Gilquin et D. Serre, Well-Posedness of the Riemann Problem; Consistency of the Godunov's Scheme. Proceeding of an A.M.S.-S.I.A.M. conference, Bowdoin college, 1988, GLIMM, KEYFITZ et LINDQUIST éd., Contemporary Mathematics n° 100.AMS, Providence, 1989. Zbl0685.65085
  12. [12] J. Glimm, Solutions in the Large for Nonlinear Hyperbolic Systems of Equations. Comm. Pure Appl. Maths., vol. 18, 1965, p. 697-715. Zbl0141.28902MR194770
  13. [13] T.Y. Hou, Homogenization for Semilinear Hyperbolic Systems with Oscillatory Data. Comm. Pure Appl. Maths., vol. 41, 1988, p. 471-495. Zbl0632.35039MR933232
  14. [14] E. Isaacson et B. Temple, The Structure of Asymptotic States in a Singular System of Conservation Laws (à paraître). Zbl0717.35053
  15. [15] J.L. Joly, Sur la propagation des oscillations par un système hyperbolique semi-linéaire en dimension 1 d'espace, C.R. Acad. Sci. Paris, t. 296, série I, 1983, p. 669-672. Zbl0555.35081MR705687
  16. [16] B.L. Keyfitz et H.C. Kranzer, A System of Non-Strictly Hyperbolic Conservation Laws Arising in Elasticity Theory, Arch. Rat. Mech. Anal., vol. 72, 1980, p. 219-241. Zbl0434.73019MR549642
  17. [17] S.N. Kruzkov, First Order Quasilinear Equations in Several Independent Variables, Mat. Sbornik, vol. 81, 1970, p. 217-243. Zbl0215.16203MR267257
  18. [18] P.D. Lax, Hyperbolic Systems of Conservation Laws. II, Comm. Pure Appl. Maths., vol. 10, 1957, p. 537-566. Zbl0081.08803MR93653
  19. [19] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, S.I.A.M. series, 1973, Philadelphia. Zbl0268.35062MR350216
  20. [20] D. Mclaughlin, G. Papanicolaou et L. Tartar, Weak Limits of Semi-Linear Hyperbolic Systems with Oscillating Data, Macroscopic Modelling of turbulent flows, Nice, 1984. Lect. Notes Phys., n° 230, p. 277-298, Springer-Verlag, Heidelberg. Zbl0588.76137MR815927
  21. [21] F. Murat, Compacité par compensation, Ann. Scuola Norm.Pisa, cl. di Sc., série IV, vol. 5, 1978, p. 489-507. Zbl0399.46022MR506997
  22. [22] F. Murat, L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q &lt; 2, J. Math. Pures et Appl., t. 60, 1981, p. 309-322. Zbl0471.46020
  23. [23] R.L. Pego et D. Serre, Instabilities in Glimm's Scheme for Two Systems of Mixed Type, S.I.A.M. J. Num. Anal., vol. 25, 1988, p. 965-988. Zbl0663.73010MR960860
  24. [24] M. Rascle et D. Serre, Compacité par compensation et systèmes hyperboliques de lois de conservation. Applications, C.R. Acad. Sci., Paris, t. 299, série I, 1984, p. 673-676. Zbl0578.35056MR770461
  25. [25] D.A. Saville et O.A. Palusinski, Theory of Electrophoretic Separations, Parts 1 et 2, A.I.C.H.E. J., vol. 32, 1986. 
  26. [26] S. Schochet, Examples of Measure-valued Solutions. Comm. in PDEs, vol. 14, 1989, p. 545-575. Zbl0682.35068MR993820
  27. [27] D. Serre, Systèmes hyperboliques riches de lois de conservation, Collège de France, Seminar X. Pitman Res. Notes Math. Ser., Longman (à paraitre). Zbl0870.35067
  28. [28] D. Serre, Large Oscillations in Hyperbolic Systems of Conservation Laws, Rend. Sem. Mat., Univ. Pol. Torino, Fascicolo speciale 1988, Hyperbolic equations, 1987, p. 185-201. Zbl0678.35066MR1007376
  29. [29] D. Serre, Propagation des oscillations dans les systèmes hyperboliques non linéaires, Nonlinear Hyperbolic Problems, Proceedings, Saint-Étienne, 1986, Lecture Notes in Maths, n° 1270, Springer-Verlag, 1987. Zbl0653.35056MR910121
  30. [30] D. Serre, Domaines invariants pour les systèmes hyperboliques de lois de conservation. J. Diff. Eq., 69, 1987, p. 46-62. Zbl0626.35061MR897440
  31. [31] D. Serre, Les ondes planes en électromagnétisme non linéaire, Physica D, vol. 31, 1988, p. 227-251. Zbl0736.35133MR955629
  32. [32] D. Serre, Un système hyperbolique non linéaire avec des données oscillantes, C.R. Acad. Sci., Paris, t. 302, série I, 1986, p. 115-168. Zbl0606.35050MR830281
  33. [33] D. Serre, Solutions à variation bornée pour certains systèmes hyperboliques de lois de conservation, J. Diff. Eq., vol. 68, 1987, p. 137-168. Zbl0627.35062MR892021
  34. [34] D. Serre, La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations à une dimension d'espace, J. Math. Pures et Appl., t. 65, 1986, p. 423-468. Zbl0601.35070MR881690
  35. [35] D. Serre, Compacité par compensation et systèmes hyperboliques de lois de conservation, C.R. Acad. Sci., Paris, t. 299, série I, 1984, p. 555-558. Zbl0578.35055MR770445
  36. [36] D. Serre, Richness and the Classification of Quasilinear Hyperbolic systems, I.M.A. volumes inMathematics and its applications n° 29, J. GLIMM & A. MAJDA éds., Springer-Verlag, Heidelberg. Zbl0760.35028
  37. [37] D. Serre, Systèmes d'EDO invariants sous l'action de systèmes hyperboliques d'EDPs, Ann. Inst. Fourier, vol. 39, 1989, p. 953-968. Zbl0687.35006MR1036339
  38. [38] L. Tartar, Compensated Compactness and Applications to PDEs, Nonlinear Analysis et Mechanics, Herriot Watt Symposium, 1979, Pitman Res. Notes Maths. Zbl0437.35004MR584398
  39. [39] L. Tartar, Cours Peccot, Collège de France, non publié. 
  40. [40] B. Temple, Systems of Conservation Laws with Invariant Submanifolds, Trans. A.M.S., vol. 280, 1983, p. 781-795. Zbl0559.35046MR716850
  41. [41] T.D. Venttsel', Estimates of Solutions of the One-Dimensional System of Equations of Gas Dynamics With "Viscosity" Not Depending on "Viscosity", J. Soviet Maths., vol. 31, 1985, p. 3148-3153. Zbl0575.76076
  42. [42] D.H. Wagner, Equivalence of the Euler and Lagrangian Equations of Gas Dynamics for Weak Solutions, J. Diff. Eq., vol. 68, 1967, p. 118-136. Zbl0647.76049MR885816
  43. [43] J. Duchon et R. Robert, Élargissement diphasique d'une nappe tourbillonaire en dynamique du fluide parfait incompressible, Preprint, Equipe d'Analyse Numérique Lyon-I, n° 64, 1987. MR917601

Citations in EuDML Documents

top
  1. Michel Rascle, On the static and dynamic study of oscillations for some nonlinear hyperbolic systems of conservation laws
  2. Jean-Luc Joly, Guy Métivier, Jeff Rauch, Focusing and absorption of nonlinear oscillations
  3. Denis Serre, Alexis F. Vasseur, L 2 -type contraction for systems of conservation laws
  4. Guy Métivier, Exemples d’instabilités pour des équations d’ondes non linéaires
  5. P. Donnat, J.-L. Joly, G. Métivier, J. Rauch, Diffractive nonlinear geometric optics
  6. Bruno Sevennec, Géométrie des systèmes hyperboliques de lois de conservation

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.