Multiplicity of periodic solution with prescribed energy to singular dynamical systems

Susanna Terracini

Annales de l'I.H.P. Analyse non linéaire (1992)

  • Volume: 9, Issue: 6, page 597-641
  • ISSN: 0294-1449

How to cite

top

Terracini, Susanna. "Multiplicity of periodic solution with prescribed energy to singular dynamical systems." Annales de l'I.H.P. Analyse non linéaire 9.6 (1992): 597-641. <http://eudml.org/doc/78292>.

@article{Terracini1992,
author = {Terracini, Susanna},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {singular Hamiltonian systems; critical point theory; homotopical index; multiplicity; periodic solutions; singular potentials; noncollision solutions},
language = {eng},
number = {6},
pages = {597-641},
publisher = {Gauthier-Villars},
title = {Multiplicity of periodic solution with prescribed energy to singular dynamical systems},
url = {http://eudml.org/doc/78292},
volume = {9},
year = {1992},
}

TY - JOUR
AU - Terracini, Susanna
TI - Multiplicity of periodic solution with prescribed energy to singular dynamical systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 6
SP - 597
EP - 641
LA - eng
KW - singular Hamiltonian systems; critical point theory; homotopical index; multiplicity; periodic solutions; singular potentials; noncollision solutions
UR - http://eudml.org/doc/78292
ER -

References

top
  1. [1] A. Ambrosetti and V. Coti Zelati, Critical Points with Lack of Compactness and Applications to Singular Dynamical Systems, Ann. di Matem. Pura e Appl., Ser. IV, Vol. CIL, 1987, pp. 237-259. Zbl0642.58017MR932787
  2. [2] A. Ambrosetti and V. Coti Zelati, Noncollision Orbits for a Class of Keplerian-Like Potentials, Ann. I.H.P. Analyse non linéaire, Vol. 5, 1988, pp. 287-295. Zbl0667.58055MR954474
  3. [3] A. Ambrosetti and V. Coti Zelati, Perturbations of Hamiltonian Systems with Keplerian Potentials, Math. Zeit., Vol. 201, 1989, pp. 227-242. Zbl0653.34032MR997224
  4. [4] A. Ambrosetti and V. Coti Zelati, Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Preprint. MR1077264
  5. [5] A. Bahri and P.H. Rabinowitz, A Minimax Method for a Class of Hamiltonian Systems with Singular Potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. Zbl0681.70018MR987301
  6. [6] P. Bartolo, V. Benci and D. Fortunato, Abstract Critical Points Theory and Application to Some Nonlinear Problems with "Strong" Resonance at Infinity, Nonlin. anal. T.M.A., Vol. 7, 1983, pp.981-1012. Zbl0522.58012MR713209
  7. [7] V. Benci, A Geometrical Index for a Group S1 and Some Applications to the Study of Periodic Solutions of O.D.E., Comm. Pure Appl. Math., Vol. 34, 1981, pp. 393-432. Zbl0447.34040MR615624
  8. [8] V. Benci, On the Critical Point Theory for Indefinite Functionals in Presence of Symmetries, Trans. Am. Math. Soc., Vol. 274, 1982, pp. 533-572. Zbl0504.58014MR675067
  9. [9] V. Benci and F. Giannoni, Periodic Solutions of Prescribed Energy for a Class of Hamiltonian Systems with Singular Potentials, J. Differential equations, Vol. 82, 1989, pp. 60-70. Zbl0689.34034MR1023301
  10. [10] A. Capozzi, S. Solimini and S. Terracini, On a Class of Dynamical Systems with Singular Potentials, Preprint S.I.S.S.A., Nonlin. Anal. T.M.A. (to appear). Zbl0744.34039
  11. [11] V. Coti Zelati, Dynamical Systems with Effective-Like Potentials, Nonlin. Anal. T.M.A., Vol. 12, 1988, pp. 209-222. Zbl0648.34050
  12. [12] V. Coti Zelati, Periodic Solutions for a Class of Planar, Singular Dynamical Systems, J. Math. Pures et Appl., T. 68, 1989, pp. 109-119. Zbl0633.34034MR985956
  13. [13] M. Degiovanni and F. Giannoni, Dynamical Systems with Newtonian Type Potentials, Ann. Scuola Norm. Sup Pisa, Cl. Sci., Vol. 4, 1989 (to appear). Zbl0692.34050MR993807
  14. [14] M. Degiovanni, F. Giannoni and A. Marino, Periodic Solutions of Dynamical Systems with Newtonian Type Potentials, Atti Accad. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. Nat., Vol. 81, 1987, pp. 271-278. Zbl0667.70010MR999819
  15. [15] W. Gordon, A minimizing Property of Keplerian Orbits, Amer. J. Math., Vol. 99, 1975, pp. 961-971. Zbl0378.58006MR502484
  16. [16] W. Gordon, Conservative Dynamical Systems Involving Strong Forces, Trans. A.M.S., Vol. 204, 1975, pp. 113-135. Zbl0276.58005MR377983
  17. [19] L. Ljusternik and L. Schnirelmann., Méthodes topologiques dans les problèmes variaionnels, Hermann, Paris, 1934. Zbl0011.02803JFM60.1228.04
  18. [20] J. Moser, Regularization of Kepler's Problem and the Averaging Method on a Maniold, Comm. Pure Appl. Math., Vol. 23, 1970, pp. 609-636. Zbl0193.53803MR269931
  19. [21] S. Terracini, An Homotopical Index and Multiplicity of Periodic Solutions to Dynamical Systems with Singular Potentials, J. of Diff. Eq. (to appear). Zbl0774.34028MR1170468
  20. [22] S. Terracini, Second Order Conservative Systems with Singular Potentials: Noncollision Periodic Solutions to the Fixed Energy Problem, Preprint, 1990. 
  21. [23] S. Terracini, Ph. D. Thesis, Preprint S.I.S.S.A., Trieste, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.