New Periodic Solutions for N-Body Problems with Weak Force Potentials

Pengfei Yuan; Shiqing Zhang

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 1, page 93-112
  • ISSN: 0392-4041

Abstract

top
In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz ([5]) and Ambrosetti-Coti Zelati ([2]) with (CPS)c type condition of Cerami-Palais-Smale ([12]) to study the existence of new periodic solutions with a prescribed energy for N-body problems with weak force type potentials.

How to cite

top

Yuan, Pengfei, and Zhang, Shiqing. "New Periodic Solutions for N-Body Problems with Weak Force Potentials." Bollettino dell'Unione Matematica Italiana 5.1 (2012): 93-112. <http://eudml.org/doc/290852>.

@article{Yuan2012,
abstract = {In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz ([5]) and Ambrosetti-Coti Zelati ([2]) with (CPS)c type condition of Cerami-Palais-Smale ([12]) to study the existence of new periodic solutions with a prescribed energy for N-body problems with weak force type potentials.},
author = {Yuan, Pengfei, Zhang, Shiqing},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {93-112},
publisher = {Unione Matematica Italiana},
title = {New Periodic Solutions for N-Body Problems with Weak Force Potentials},
url = {http://eudml.org/doc/290852},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Yuan, Pengfei
AU - Zhang, Shiqing
TI - New Periodic Solutions for N-Body Problems with Weak Force Potentials
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/2//
PB - Unione Matematica Italiana
VL - 5
IS - 1
SP - 93
EP - 112
AB - In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz ([5]) and Ambrosetti-Coti Zelati ([2]) with (CPS)c type condition of Cerami-Palais-Smale ([12]) to study the existence of new periodic solutions with a prescribed energy for N-body problems with weak force type potentials.
LA - eng
UR - http://eudml.org/doc/290852
ER -

References

top
  1. AMBROSETTI, A. - COTI ZELATI, V., Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal., 112 (1990), 339-362. Zbl0737.70008MR1077264DOI10.1007/BF02384078
  2. AMBROSETTI, A. - COTI ZELATI, V., Closed orbits of fixed energy for a class of N-body problems, Ann. Inst. H. Poincaré, Analyse Non Lineaire, 9 (1992), 187-200, Addendum, Ann. Inst. H. Poincaré, Analyse Non Lineaire, 9 (1992), 337-338. Zbl0757.70007MR1168307DOI10.1016/S0294-1449(16)30241-4
  3. AMBROSETTI, A. - COTI ZELATI, V., Non-collision periodic solutions for a class of symmetric 3-body type problems. Topol. Methods Nonlinear Anal., 3 (1994),197-207. Zbl0829.70006MR1281984DOI10.12775/TMNA.1994.010
  4. AMBROSETTI, A. - COTI ZELATI, V., Periodic solutions for singualr Lagrangian systems, Springer, 1993. Zbl0785.34032MR1267225DOI10.1007/978-1-4612-0319-3
  5. AMBROSETTI, A. - RABINOWITZ, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. Zbl0273.49063MR370183DOI10.1016/0022-1236(73)90051-7
  6. AMBROSETTI, A. - TANAKA, K. - VITILLARO, E., Periodic solutions with prescribed energy for some Keplerian N-body problems, Ann. Inst. H. P. Poincaré Anal. Nonlinaire, 11 (1994), 613-632. Zbl0855.70006MR1310624DOI10.1016/S0294-1449(16)30170-6
  7. ARIOLI, G. - GAZZOLA, F. - TERRACINI, S., Minimization properties of Hill's orbits and applications to some N-body problems, Ann. Inst. H. Poincaré Anal Non Lineaire, 7 (2000), 617-650. Zbl0977.70006MR1791880DOI10.1016/S0294-1449(00)00122-0
  8. BAHRI, A. - RABINOWITZ, P. H., Periodic solutions of Hamiltonian systems of three body type. Ann. Inst. H. Poincaré Anal. Non Lineaire, 8 (1991), 561-649. Zbl0745.34034MR1145561DOI10.1016/S0294-1449(16)30252-9
  9. BESSI, U. - COTI ZELATI, V., Symmetries and noncollision closed orbits for planar N-body-type problems, Nonlinear Anal., 16 (1991), 587-598. Zbl0715.70016MR1094320DOI10.1016/0362-546X(91)90030-5
  10. BUTTAZZO, G. - GIAQUINTA, M. - HILDEBRANDT, S., One-dimensional variational problems, Oxford university press, 1998. Zbl0915.49001MR1694383
  11. CARMINATI, C. - SERE, E. - TANAKA, K., The fixed energy problem for a class of nonconvex singular Hailtonian systems. J. Differential Equation, 230 (2006), 362- 377. Zbl1104.37039MR2270557DOI10.1016/j.jde.2006.01.021
  12. CERAMI, G., Un criterio di esistenza per i punti critici su variete illimitate, Rend. Acad. Sci. Let. Ist. Lombardo, 112 (1978), 332-336. MR581298
  13. CHANG, K. C., Infinite dimensional Morse theory and multiple solution problems, Birkhauser, 1993. Zbl0779.58005MR1196690DOI10.1007/978-1-4612-0385-8
  14. CHEN, K. C., Existence and minimizing properties of vetrograde orbits to the three-body problems with various choices of masses, Annals of Math., 167 (2008), 325-348. Zbl1170.70006MR2415377DOI10.4007/annals.2008.167.325
  15. CHEN, K. C., Variational methods on periodic and quasi-periodic solutions for the N-body problems, Ergodic theory Dynam. Systems, 23 (2003), 1691-1715. Zbl1128.70306MR2032484DOI10.1017/S0143385703000245
  16. CHENCINER, A., Action minimizing solutions of the Newtonian n-body problem: From homology to symmetry, ICM 2002, Vol.3, pp. 279-294, Vol. 1, pp. 641-643. Zbl1136.70310MR1957539
  17. CHENCINER, A. - MONTGOMERY, R., A remarkable periodic solution of the three body problem in the case of equal masses, Ann. of Math., 152 (2000), 881-901. Zbl0987.70009MR1815704DOI10.2307/2661357
  18. CHENCINER, A., Some facts and more questions about the eight, Topological methods, Variational methods and their Appl., ICM 2002 Satellite Conference on Nonlinear functional Anal., edited by H. Brezis, K. C. Chang, S. J. Li and P. Rabinowitz, 77-88. Zbl1205.37076MR2010643
  19. COTI ZELATI, V., Introduction to variational methods and singular lagrangian systems, ICTP Lecture Notes, 1994. Zbl0832.70009
  20. COTI ZELATI, V., The periodic solutions of N-body type problems, Ann. Inst. H. Poincaré Anal. Nonlineaire, 7 (1990), 477-492. Zbl0723.70010MR1138534DOI10.1016/S0294-1449(16)30288-8
  21. DEGIOVANNI, M. - GIANNONI, F., Dynamical systems with Newtonian type potentials, Ann. Sc. Norm. Sup. Pisa, 15 (1989), 467-494. Zbl0692.34050MR1015804
  22. DELL'ANTONIO, G. F., Classical solutions of a perturbed N-body system, In Top. Nonlinear Anal, M. Matzeu etc. ed. (Birkhauser, 1997), 1-86. MR1453887
  23. EKELAND, I., Convexity methods in Hamiltonian mechanics, Springer, 1990. Zbl0707.70003MR1051888DOI10.1007/978-3-642-74331-3
  24. FERRARIO, D. - TERRACINI, S., On the existence of collisionless equivariant mini- mizers for the classical n-bodyproblem, Invent. Math., 155 (2004), 305-362. Zbl1068.70013MR2031430DOI10.1007/s00222-003-0322-7
  25. GHOUSSOUB, N. - PREISS, D., A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincaré Anal. Non Lineaire, 6 (1989), 321-330. Zbl0711.58008MR1030853
  26. GORDON, W. B., A minimizing Property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. Zbl0378.58006MR502484DOI10.2307/2373993
  27. GORDON, W. B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. Zbl0276.58005MR377983DOI10.2307/1997352
  28. LONG, Y. M. - ZHANG, S. Q., Geometric characterizations for variational minimization solutions of the 3-body problems, Act Math. Sinica, 16 (2000), 579-592. Zbl0980.70009MR1813454DOI10.1007/s101140000007
  29. MAJER, P. - TERRACINI, S., Periodic solutions to some N-body type problems: the fixed energy case. Duke Math. J., 69 (1993), 683-697. Zbl0807.70009MR1208817DOI10.1215/S0012-7094-93-06929-3
  30. MARCHAL, C., How the method of minimization of action avoids singularities, Cel. Mech. and Dyn. Astronomy, 83 (2002), 325-323. Zbl1073.70011MR1956531DOI10.1023/A:1020128408706
  31. MOORE, C., Braids in classical gravity, Phys. Rev. Lett., 70 (1993), 3675-3679. Zbl1050.37522MR1220207DOI10.1103/PhysRevLett.70.3675
  32. PALAIS, R., The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19- 30. Zbl0417.58007MR547524
  33. SERRA, E. - TERRACINI, S., Collisionless periodic solutions to some 3-body problems, Arch. Rational. Mech. Anal., 120 (1992), 305-325. Zbl0773.70009MR1185563DOI10.1007/BF00380317
  34. SIMO, C., Dynamical properties of the figure eight solution of the three-body problem, In: Contemp. Math., Vol. 292, Amer. Math. Soc., Providence, RI, 2002, 209-228. Zbl1151.70316MR1884902DOI10.1090/conm/292/04926
  35. SIMO, C., New families of solutions in N-body problems, In Progr. Math., 201 (2001), 101-115. Zbl1101.70009MR1905315
  36. TERRACINI, S., Multiplicity of periodic solution with prescribed energy to singular dynamical systems. Ann. Inst. H. Poincaré Anal. Nonlinaire, 9 (1992), 597-641. Zbl0771.34035MR1198306DOI10.1016/S0294-1449(16)30224-4
  37. VENTURELLI, A., Une caracterisation variationnelle des solutions de Lagrange du problem plan des trois corps, C.R. Acad. Sci. Paris, 332 (2001), 641-644. Zbl1034.70007MR1841900DOI10.1016/S0764-4442(01)01788-8
  38. ZHANG, S. Q. - ZHOU, Q., A minimizing property of Lagrangian solutions, Acta Math. Sinica, 17 (2001), 497-500. Zbl0988.70007MR1852963DOI10.1007/s101140100124
  39. ZHANG, S. Q. - ZHOU, Q., Variational methods for the choregraphy solution to the three-body problem, Sci. China, 45 (2002), 594-597. MR1911174
  40. ZHANG, S. Q. - ZHOU, Q. - LIU, Y., New periodic solutions for 3-body problems, Cel. Mech., 88 (2004), 365-378. Zbl1160.70325MR2054928DOI10.1023/B:CELE.0000023407.67793.a1
  41. ZIEMER, W. P., Weakly differentiable functions, Springer, 1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.