New Periodic Solutions for N-Body Problems with Weak Force Potentials
Bollettino dell'Unione Matematica Italiana (2012)
- Volume: 5, Issue: 1, page 93-112
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topYuan, Pengfei, and Zhang, Shiqing. "New Periodic Solutions for N-Body Problems with Weak Force Potentials." Bollettino dell'Unione Matematica Italiana 5.1 (2012): 93-112. <http://eudml.org/doc/290852>.
@article{Yuan2012,
abstract = {In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz ([5]) and Ambrosetti-Coti Zelati ([2]) with (CPS)c type condition of Cerami-Palais-Smale ([12]) to study the existence of new periodic solutions with a prescribed energy for N-body problems with weak force type potentials.},
author = {Yuan, Pengfei, Zhang, Shiqing},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {93-112},
publisher = {Unione Matematica Italiana},
title = {New Periodic Solutions for N-Body Problems with Weak Force Potentials},
url = {http://eudml.org/doc/290852},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Yuan, Pengfei
AU - Zhang, Shiqing
TI - New Periodic Solutions for N-Body Problems with Weak Force Potentials
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/2//
PB - Unione Matematica Italiana
VL - 5
IS - 1
SP - 93
EP - 112
AB - In this paper, we apply a variant of the famous Mountain Pass Lemmas of Ambrosetti-Rabinowitz ([5]) and Ambrosetti-Coti Zelati ([2]) with (CPS)c type condition of Cerami-Palais-Smale ([12]) to study the existence of new periodic solutions with a prescribed energy for N-body problems with weak force type potentials.
LA - eng
UR - http://eudml.org/doc/290852
ER -
References
top- AMBROSETTI, A. - COTI ZELATI, V., Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal., 112 (1990), 339-362. Zbl0737.70008MR1077264DOI10.1007/BF02384078
- AMBROSETTI, A. - COTI ZELATI, V., Closed orbits of fixed energy for a class of N-body problems, Ann. Inst. H. Poincaré, Analyse Non Lineaire, 9 (1992), 187-200, Addendum, Ann. Inst. H. Poincaré, Analyse Non Lineaire, 9 (1992), 337-338. Zbl0757.70007MR1168307DOI10.1016/S0294-1449(16)30241-4
- AMBROSETTI, A. - COTI ZELATI, V., Non-collision periodic solutions for a class of symmetric 3-body type problems. Topol. Methods Nonlinear Anal., 3 (1994),197-207. Zbl0829.70006MR1281984DOI10.12775/TMNA.1994.010
- AMBROSETTI, A. - COTI ZELATI, V., Periodic solutions for singualr Lagrangian systems, Springer, 1993. Zbl0785.34032MR1267225DOI10.1007/978-1-4612-0319-3
- AMBROSETTI, A. - RABINOWITZ, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. Zbl0273.49063MR370183DOI10.1016/0022-1236(73)90051-7
- AMBROSETTI, A. - TANAKA, K. - VITILLARO, E., Periodic solutions with prescribed energy for some Keplerian N-body problems, Ann. Inst. H. P. Poincaré Anal. Nonlinaire, 11 (1994), 613-632. Zbl0855.70006MR1310624DOI10.1016/S0294-1449(16)30170-6
- ARIOLI, G. - GAZZOLA, F. - TERRACINI, S., Minimization properties of Hill's orbits and applications to some N-body problems, Ann. Inst. H. Poincaré Anal Non Lineaire, 7 (2000), 617-650. Zbl0977.70006MR1791880DOI10.1016/S0294-1449(00)00122-0
- BAHRI, A. - RABINOWITZ, P. H., Periodic solutions of Hamiltonian systems of three body type. Ann. Inst. H. Poincaré Anal. Non Lineaire, 8 (1991), 561-649. Zbl0745.34034MR1145561DOI10.1016/S0294-1449(16)30252-9
- BESSI, U. - COTI ZELATI, V., Symmetries and noncollision closed orbits for planar N-body-type problems, Nonlinear Anal., 16 (1991), 587-598. Zbl0715.70016MR1094320DOI10.1016/0362-546X(91)90030-5
- BUTTAZZO, G. - GIAQUINTA, M. - HILDEBRANDT, S., One-dimensional variational problems, Oxford university press, 1998. Zbl0915.49001MR1694383
- CARMINATI, C. - SERE, E. - TANAKA, K., The fixed energy problem for a class of nonconvex singular Hailtonian systems. J. Differential Equation, 230 (2006), 362- 377. Zbl1104.37039MR2270557DOI10.1016/j.jde.2006.01.021
- CERAMI, G., Un criterio di esistenza per i punti critici su variete illimitate, Rend. Acad. Sci. Let. Ist. Lombardo, 112 (1978), 332-336. MR581298
- CHANG, K. C., Infinite dimensional Morse theory and multiple solution problems, Birkhauser, 1993. Zbl0779.58005MR1196690DOI10.1007/978-1-4612-0385-8
- CHEN, K. C., Existence and minimizing properties of vetrograde orbits to the three-body problems with various choices of masses, Annals of Math., 167 (2008), 325-348. Zbl1170.70006MR2415377DOI10.4007/annals.2008.167.325
- CHEN, K. C., Variational methods on periodic and quasi-periodic solutions for the N-body problems, Ergodic theory Dynam. Systems, 23 (2003), 1691-1715. Zbl1128.70306MR2032484DOI10.1017/S0143385703000245
- CHENCINER, A., Action minimizing solutions of the Newtonian n-body problem: From homology to symmetry, ICM 2002, Vol.3, pp. 279-294, Vol. 1, pp. 641-643. Zbl1136.70310MR1957539
- CHENCINER, A. - MONTGOMERY, R., A remarkable periodic solution of the three body problem in the case of equal masses, Ann. of Math., 152 (2000), 881-901. Zbl0987.70009MR1815704DOI10.2307/2661357
- CHENCINER, A., Some facts and more questions about the eight, Topological methods, Variational methods and their Appl., ICM 2002 Satellite Conference on Nonlinear functional Anal., edited by H. Brezis, K. C. Chang, S. J. Li and P. Rabinowitz, 77-88. Zbl1205.37076MR2010643
- COTI ZELATI, V., Introduction to variational methods and singular lagrangian systems, ICTP Lecture Notes, 1994. Zbl0832.70009
- COTI ZELATI, V., The periodic solutions of N-body type problems, Ann. Inst. H. Poincaré Anal. Nonlineaire, 7 (1990), 477-492. Zbl0723.70010MR1138534DOI10.1016/S0294-1449(16)30288-8
- DEGIOVANNI, M. - GIANNONI, F., Dynamical systems with Newtonian type potentials, Ann. Sc. Norm. Sup. Pisa, 15 (1989), 467-494. Zbl0692.34050MR1015804
- DELL'ANTONIO, G. F., Classical solutions of a perturbed N-body system, In Top. Nonlinear Anal, M. Matzeu etc. ed. (Birkhauser, 1997), 1-86. MR1453887
- EKELAND, I., Convexity methods in Hamiltonian mechanics, Springer, 1990. Zbl0707.70003MR1051888DOI10.1007/978-3-642-74331-3
- FERRARIO, D. - TERRACINI, S., On the existence of collisionless equivariant mini- mizers for the classical n-bodyproblem, Invent. Math., 155 (2004), 305-362. Zbl1068.70013MR2031430DOI10.1007/s00222-003-0322-7
- GHOUSSOUB, N. - PREISS, D., A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincaré Anal. Non Lineaire, 6 (1989), 321-330. Zbl0711.58008MR1030853
- GORDON, W. B., A minimizing Property of Keplerian orbits, Amer. J. Math., 99 (1977), 961-971. Zbl0378.58006MR502484DOI10.2307/2373993
- GORDON, W. B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975), 113-135. Zbl0276.58005MR377983DOI10.2307/1997352
- LONG, Y. M. - ZHANG, S. Q., Geometric characterizations for variational minimization solutions of the 3-body problems, Act Math. Sinica, 16 (2000), 579-592. Zbl0980.70009MR1813454DOI10.1007/s101140000007
- MAJER, P. - TERRACINI, S., Periodic solutions to some N-body type problems: the fixed energy case. Duke Math. J., 69 (1993), 683-697. Zbl0807.70009MR1208817DOI10.1215/S0012-7094-93-06929-3
- MARCHAL, C., How the method of minimization of action avoids singularities, Cel. Mech. and Dyn. Astronomy, 83 (2002), 325-323. Zbl1073.70011MR1956531DOI10.1023/A:1020128408706
- MOORE, C., Braids in classical gravity, Phys. Rev. Lett., 70 (1993), 3675-3679. Zbl1050.37522MR1220207DOI10.1103/PhysRevLett.70.3675
- PALAIS, R., The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19- 30. Zbl0417.58007MR547524
- SERRA, E. - TERRACINI, S., Collisionless periodic solutions to some 3-body problems, Arch. Rational. Mech. Anal., 120 (1992), 305-325. Zbl0773.70009MR1185563DOI10.1007/BF00380317
- SIMO, C., Dynamical properties of the figure eight solution of the three-body problem, In: Contemp. Math., Vol. 292, Amer. Math. Soc., Providence, RI, 2002, 209-228. Zbl1151.70316MR1884902DOI10.1090/conm/292/04926
- SIMO, C., New families of solutions in N-body problems, In Progr. Math., 201 (2001), 101-115. Zbl1101.70009MR1905315
- TERRACINI, S., Multiplicity of periodic solution with prescribed energy to singular dynamical systems. Ann. Inst. H. Poincaré Anal. Nonlinaire, 9 (1992), 597-641. Zbl0771.34035MR1198306DOI10.1016/S0294-1449(16)30224-4
- VENTURELLI, A., Une caracterisation variationnelle des solutions de Lagrange du problem plan des trois corps, C.R. Acad. Sci. Paris, 332 (2001), 641-644. Zbl1034.70007MR1841900DOI10.1016/S0764-4442(01)01788-8
- ZHANG, S. Q. - ZHOU, Q., A minimizing property of Lagrangian solutions, Acta Math. Sinica, 17 (2001), 497-500. Zbl0988.70007MR1852963DOI10.1007/s101140100124
- ZHANG, S. Q. - ZHOU, Q., Variational methods for the choregraphy solution to the three-body problem, Sci. China, 45 (2002), 594-597. MR1911174
- ZHANG, S. Q. - ZHOU, Q. - LIU, Y., New periodic solutions for 3-body problems, Cel. Mech., 88 (2004), 365-378. Zbl1160.70325MR2054928DOI10.1023/B:CELE.0000023407.67793.a1
- ZIEMER, W. P., Weakly differentiable functions, Springer, 1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.