On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold
Annales de l'institut Fourier (1978)
- Volume: 28, Issue: 2, page 25-52
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. M. BONY, Majorations a priori et problèmes frontières elliptiques du second ordre, Sem. Choquet (Initiation à l'Analyse) 5e année 1965-1966 exposée 3. Zbl0164.13502
- [2] M. BRELOT, On topologies and boundaries in potential theory, Lecture Notes in Mathematics 175 Springer-Verlag, Berlin-Heidelberg, New York, 1971. Zbl0222.31014MR43 #7654
- [3] L. CARLESON, On the existence of boundary values for harmonic functions in several variables, Arkiv för Math., 4 (1962), 393-399. Zbl0107.08402MR28 #2232
- [4] Mme R.-M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
- [5] R. HUNT and R. WHEEDEN, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc., 147 (1970), 507-527. Zbl0193.39601MR43 #547
- [6] P. LœB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16 (2) (1966), 167-208. Zbl0172.15101
- [7] R. S. MARTIN, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. Zbl0025.33302MR2,292hJFM67.0343.03
- [8] P.-A. MEYER, Probability and potentials, Blaisdell Publishing Company, Waltham, Mass. 1966. Zbl0138.10401MR34 #5119
- [9] K. MILLER, Barriers on cones for uniformly elliptic operators, Ann. di Mat. pura ed appl. (IV), 76 (1967), 93-106. Zbl0149.32101MR36 #4139
- [10] J. R. MUNKRES, Elementary differential Topology, Annals of Math. Studies 54, Princeton University Press, Princeton N.J., 1963. Zbl0107.17201
- [11] M. SCHIFFER and D. C. SPENCER, Functionals of Finite Riemann Surfaces, Princeton University Press, Princeton, N.J., 1954. Zbl0059.06901MR16,461g
- [12] J. SERRIN, On the Harnack inequality for linear elliptie equations, Jour. d'Anal. Math., 4 (1955-1956), 297-308. Zbl0070.32302
- [13] J. STALLINGS, On infinite processes leading to differentiability in the complement of a point, publ. in Differential and Combinatorial Topology ed., by S. S. Cairns, Princeton University Press, Princeton, N.J., 1965. Zbl0136.44302MR31 #5213
- [14] N. STEENROD, The Topology of Fibre Bundles, Princeton University Press, Princeton, N.J., 1951. Zbl0054.07103MR12,522b
- [15] J. C. TAYLOR, The Martin boundary of equivalent sheaves, Ann. Inst. Fourier, XX (1) (1970) 433-456. Zbl0185.19801MR42 #2022
- [16] A. ANCONA, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, to appear. Zbl0377.31001
- [17] M. BRELOT, Remarques sur la variation des fonctions sous-harmoniques, Ann. Inst. Fourier, 2 (1950), 101-112. Zbl0042.33604MR13,458i
- [18] S. ITO, Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334. Zbl0178.13902MR33 #4442