On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold

John C. Taylor

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 2, page 25-52
  • ISSN: 0373-0956

Abstract

top
The Martin compactification of a bounded Lipschitz domain D R n is shown to be D for a large class of uniformly elliptic second order partial differential operators on D .Let X be an open Riemannian manifold and let M X be open relatively compact, connected, with Lipschitz boundary. Then M is the Martin compactification of M associated with the restriction to M of the Laplace-Beltrami operator on X . Consequently an open Riemannian manifold X has at most one compactification which is a compact Riemannian manifold with boundary whose interior is X .

How to cite

top

Taylor, John C.. "On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold." Annales de l'institut Fourier 28.2 (1978): 25-52. <http://eudml.org/doc/74360>.

@article{Taylor1978,
abstract = {The Martin compactification of a bounded Lipschitz domain $D\subset \{\bf R\}^n$ is shown to be $\overline\{D\}$ for a large class of uniformly elliptic second order partial differential operators on $D$.Let $X$ be an open Riemannian manifold and let $M\subset X$ be open relatively compact, connected, with Lipschitz boundary. Then $\overline\{M\}$ is the Martin compactification of $M$ associated with the restriction to $M$ of the Laplace-Beltrami operator on $X$. Consequently an open Riemannian manifold $X$ has at most one compactification which is a compact Riemannian manifold with boundary whose interior is $X$.},
author = {Taylor, John C.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {25-52},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold},
url = {http://eudml.org/doc/74360},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Taylor, John C.
TI - On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 2
SP - 25
EP - 52
AB - The Martin compactification of a bounded Lipschitz domain $D\subset {\bf R}^n$ is shown to be $\overline{D}$ for a large class of uniformly elliptic second order partial differential operators on $D$.Let $X$ be an open Riemannian manifold and let $M\subset X$ be open relatively compact, connected, with Lipschitz boundary. Then $\overline{M}$ is the Martin compactification of $M$ associated with the restriction to $M$ of the Laplace-Beltrami operator on $X$. Consequently an open Riemannian manifold $X$ has at most one compactification which is a compact Riemannian manifold with boundary whose interior is $X$.
LA - eng
UR - http://eudml.org/doc/74360
ER -

References

top
  1. [1] J. M. BONY, Majorations a priori et problèmes frontières elliptiques du second ordre, Sem. Choquet (Initiation à l'Analyse) 5e année 1965-1966 exposée 3. Zbl0164.13502
  2. [2] M. BRELOT, On topologies and boundaries in potential theory, Lecture Notes in Mathematics 175 Springer-Verlag, Berlin-Heidelberg, New York, 1971. Zbl0222.31014MR43 #7654
  3. [3] L. CARLESON, On the existence of boundary values for harmonic functions in several variables, Arkiv för Math., 4 (1962), 393-399. Zbl0107.08402MR28 #2232
  4. [4] Mme R.-M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  5. [5] R. HUNT and R. WHEEDEN, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc., 147 (1970), 507-527. Zbl0193.39601MR43 #547
  6. [6] P. LœB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16 (2) (1966), 167-208. Zbl0172.15101
  7. [7] R. S. MARTIN, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. Zbl0025.33302MR2,292hJFM67.0343.03
  8. [8] P.-A. MEYER, Probability and potentials, Blaisdell Publishing Company, Waltham, Mass. 1966. Zbl0138.10401MR34 #5119
  9. [9] K. MILLER, Barriers on cones for uniformly elliptic operators, Ann. di Mat. pura ed appl. (IV), 76 (1967), 93-106. Zbl0149.32101MR36 #4139
  10. [10] J. R. MUNKRES, Elementary differential Topology, Annals of Math. Studies 54, Princeton University Press, Princeton N.J., 1963. Zbl0107.17201
  11. [11] M. SCHIFFER and D. C. SPENCER, Functionals of Finite Riemann Surfaces, Princeton University Press, Princeton, N.J., 1954. Zbl0059.06901MR16,461g
  12. [12] J. SERRIN, On the Harnack inequality for linear elliptie equations, Jour. d'Anal. Math., 4 (1955-1956), 297-308. Zbl0070.32302
  13. [13] J. STALLINGS, On infinite processes leading to differentiability in the complement of a point, publ. in Differential and Combinatorial Topology ed., by S. S. Cairns, Princeton University Press, Princeton, N.J., 1965. Zbl0136.44302MR31 #5213
  14. [14] N. STEENROD, The Topology of Fibre Bundles, Princeton University Press, Princeton, N.J., 1951. Zbl0054.07103MR12,522b
  15. [15] J. C. TAYLOR, The Martin boundary of equivalent sheaves, Ann. Inst. Fourier, XX (1) (1970) 433-456. Zbl0185.19801MR42 #2022
  16. [16] A. ANCONA, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, to appear. Zbl0377.31001
  17. [17] M. BRELOT, Remarques sur la variation des fonctions sous-harmoniques, Ann. Inst. Fourier, 2 (1950), 101-112. Zbl0042.33604MR13,458i
  18. [18] S. ITO, Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334. Zbl0178.13902MR33 #4442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.