On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold
Annales de l'institut Fourier (1978)
- Volume: 28, Issue: 2, page 25-52
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTaylor, John C.. "On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold." Annales de l'institut Fourier 28.2 (1978): 25-52. <http://eudml.org/doc/74360>.
@article{Taylor1978,
abstract = {The Martin compactification of a bounded Lipschitz domain $D\subset \{\bf R\}^n$ is shown to be $\overline\{D\}$ for a large class of uniformly elliptic second order partial differential operators on $D$.Let $X$ be an open Riemannian manifold and let $M\subset X$ be open relatively compact, connected, with Lipschitz boundary. Then $\overline\{M\}$ is the Martin compactification of $M$ associated with the restriction to $M$ of the Laplace-Beltrami operator on $X$. Consequently an open Riemannian manifold $X$ has at most one compactification which is a compact Riemannian manifold with boundary whose interior is $X$.},
author = {Taylor, John C.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {25-52},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold},
url = {http://eudml.org/doc/74360},
volume = {28},
year = {1978},
}
TY - JOUR
AU - Taylor, John C.
TI - On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 2
SP - 25
EP - 52
AB - The Martin compactification of a bounded Lipschitz domain $D\subset {\bf R}^n$ is shown to be $\overline{D}$ for a large class of uniformly elliptic second order partial differential operators on $D$.Let $X$ be an open Riemannian manifold and let $M\subset X$ be open relatively compact, connected, with Lipschitz boundary. Then $\overline{M}$ is the Martin compactification of $M$ associated with the restriction to $M$ of the Laplace-Beltrami operator on $X$. Consequently an open Riemannian manifold $X$ has at most one compactification which is a compact Riemannian manifold with boundary whose interior is $X$.
LA - eng
UR - http://eudml.org/doc/74360
ER -
References
top- [1] J. M. BONY, Majorations a priori et problèmes frontières elliptiques du second ordre, Sem. Choquet (Initiation à l'Analyse) 5e année 1965-1966 exposée 3. Zbl0164.13502
- [2] M. BRELOT, On topologies and boundaries in potential theory, Lecture Notes in Mathematics 175 Springer-Verlag, Berlin-Heidelberg, New York, 1971. Zbl0222.31014MR43 #7654
- [3] L. CARLESON, On the existence of boundary values for harmonic functions in several variables, Arkiv för Math., 4 (1962), 393-399. Zbl0107.08402MR28 #2232
- [4] Mme R.-M. HERVÉ, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
- [5] R. HUNT and R. WHEEDEN, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc., 147 (1970), 507-527. Zbl0193.39601MR43 #547
- [6] P. LœB, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16 (2) (1966), 167-208. Zbl0172.15101
- [7] R. S. MARTIN, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. Zbl0025.33302MR2,292hJFM67.0343.03
- [8] P.-A. MEYER, Probability and potentials, Blaisdell Publishing Company, Waltham, Mass. 1966. Zbl0138.10401MR34 #5119
- [9] K. MILLER, Barriers on cones for uniformly elliptic operators, Ann. di Mat. pura ed appl. (IV), 76 (1967), 93-106. Zbl0149.32101MR36 #4139
- [10] J. R. MUNKRES, Elementary differential Topology, Annals of Math. Studies 54, Princeton University Press, Princeton N.J., 1963. Zbl0107.17201
- [11] M. SCHIFFER and D. C. SPENCER, Functionals of Finite Riemann Surfaces, Princeton University Press, Princeton, N.J., 1954. Zbl0059.06901MR16,461g
- [12] J. SERRIN, On the Harnack inequality for linear elliptie equations, Jour. d'Anal. Math., 4 (1955-1956), 297-308. Zbl0070.32302
- [13] J. STALLINGS, On infinite processes leading to differentiability in the complement of a point, publ. in Differential and Combinatorial Topology ed., by S. S. Cairns, Princeton University Press, Princeton, N.J., 1965. Zbl0136.44302MR31 #5213
- [14] N. STEENROD, The Topology of Fibre Bundles, Princeton University Press, Princeton, N.J., 1951. Zbl0054.07103MR12,522b
- [15] J. C. TAYLOR, The Martin boundary of equivalent sheaves, Ann. Inst. Fourier, XX (1) (1970) 433-456. Zbl0185.19801MR42 #2022
- [16] A. ANCONA, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, to appear. Zbl0377.31001
- [17] M. BRELOT, Remarques sur la variation des fonctions sous-harmoniques, Ann. Inst. Fourier, 2 (1950), 101-112. Zbl0042.33604MR13,458i
- [18] S. ITO, Martin boundary for linear elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334. Zbl0178.13902MR33 #4442
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.