Connectivity properties of the range of a weak diffeomorphism

Mariano Giaquinta; Giuseppe Modica; Jiří Souček

Annales de l'I.H.P. Analyse non linéaire (1995)

  • Volume: 12, Issue: 1, page 61-73
  • ISSN: 0294-1449

How to cite

top

Giaquinta, Mariano, Modica, Giuseppe, and Souček, Jiří. "Connectivity properties of the range of a weak diffeomorphism." Annales de l'I.H.P. Analyse non linéaire 12.1 (1995): 61-73. <http://eudml.org/doc/78352>.

@article{Giaquinta1995,
author = {Giaquinta, Mariano, Modica, Giuseppe, Souček, Jiří},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {finite elasticity; connectivity; weak diffeomorphisms; elastic deformations},
language = {eng},
number = {1},
pages = {61-73},
publisher = {Gauthier-Villars},
title = {Connectivity properties of the range of a weak diffeomorphism},
url = {http://eudml.org/doc/78352},
volume = {12},
year = {1995},
}

TY - JOUR
AU - Giaquinta, Mariano
AU - Modica, Giuseppe
AU - Souček, Jiří
TI - Connectivity properties of the range of a weak diffeomorphism
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 1
SP - 61
EP - 73
LA - eng
KW - finite elasticity; connectivity; weak diffeomorphisms; elastic deformations
UR - http://eudml.org/doc/78352
ER -

References

top
  1. [1] H. Federer, Geometric measure theory, Grundlehren math. Wissen.153, Springer-Verlag, Berlin, 1969. Zbl0176.00801MR257325
  2. [2] M. Giaquinta, G. Modica and J. Souček, Cartesian currents and variational problems for mappings into spheres, Ann. Sc. Norm. Sup. Pisa, Vol. 16, 1989, pp. 393-485. Zbl0713.49014MR1050333
  3. [3] M. Giaquinta, G. Modica and J. SouČek, Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., Vol. 106, 1989, pp. 97-159. Erratum and addendum, Arch. Rat. Mech. Anal., Vol. 109, 1990, pp. 385-392. Zbl0677.73014MR980756
  4. [4] M. Giaquinta, G. Modica and J. Souček, A weak approach to finite elasticity, Calc. Var., Vol. 2, 1994, pp. 65-100. Zbl0806.49007MR1384395
  5. [5] M. Giaquinta, G. Modica and J. Souček, Graphs of finite mass which cannot be approximated in area by smooth graphs, Manuscripta Math., Vol. 78, 1993, pp. 259-271. Zbl0796.58006MR1206156
  6. [6] M. Giaquinta, G. Modica and J. Souček, Remarks on the degree theory, 1993. Zbl0822.55003
  7. [7] E. Giusti, Precisazione delle funzioni H1,p e singolarità delle soluzioni deboli di sistemi ellittici non lineari, Boll. UMI, Vol. 2, 1969, pp. 71-76. Zbl0175.40103MR243190
  8. [8] C. Goffman, C.J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J., Vol. 28, 1961, pp. 497-505. Zbl0101.15502MR137805
  9. [9] C. Goffman and D. Waterman, Approximately continuous transformations, Proc. Am. Mat. Soc., Vol. 12, 1961, pp. 116-121. Zbl0096.17103MR120327
  10. [10] J. Lukeš, J. Malý and L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture notes1189, Springer-Verlag, Berlin, 1986. Zbl0607.31001MR861411
  11. [11] L. Simon, Lectures on geometric measure theory, The Centre for mathematical Analysis, Canberra, 1983. Zbl0546.49019MR756417
  12. [12] V. Šverák, Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal., Vol. 100, 1988, pp. 105-127. Zbl0659.73038MR913960
  13. [13] W.P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.