Connectivity properties of the range of a weak diffeomorphism
Mariano Giaquinta; Giuseppe Modica; Jiří Souček
Annales de l'I.H.P. Analyse non linéaire (1995)
- Volume: 12, Issue: 1, page 61-73
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGiaquinta, Mariano, Modica, Giuseppe, and Souček, Jiří. "Connectivity properties of the range of a weak diffeomorphism." Annales de l'I.H.P. Analyse non linéaire 12.1 (1995): 61-73. <http://eudml.org/doc/78352>.
@article{Giaquinta1995,
author = {Giaquinta, Mariano, Modica, Giuseppe, Souček, Jiří},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {finite elasticity; connectivity; weak diffeomorphisms; elastic deformations},
language = {eng},
number = {1},
pages = {61-73},
publisher = {Gauthier-Villars},
title = {Connectivity properties of the range of a weak diffeomorphism},
url = {http://eudml.org/doc/78352},
volume = {12},
year = {1995},
}
TY - JOUR
AU - Giaquinta, Mariano
AU - Modica, Giuseppe
AU - Souček, Jiří
TI - Connectivity properties of the range of a weak diffeomorphism
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1995
PB - Gauthier-Villars
VL - 12
IS - 1
SP - 61
EP - 73
LA - eng
KW - finite elasticity; connectivity; weak diffeomorphisms; elastic deformations
UR - http://eudml.org/doc/78352
ER -
References
top- [1] H. Federer, Geometric measure theory, Grundlehren math. Wissen.153, Springer-Verlag, Berlin, 1969. Zbl0176.00801MR257325
- [2] M. Giaquinta, G. Modica and J. Souček, Cartesian currents and variational problems for mappings into spheres, Ann. Sc. Norm. Sup. Pisa, Vol. 16, 1989, pp. 393-485. Zbl0713.49014MR1050333
- [3] M. Giaquinta, G. Modica and J. SouČek, Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., Vol. 106, 1989, pp. 97-159. Erratum and addendum, Arch. Rat. Mech. Anal., Vol. 109, 1990, pp. 385-392. Zbl0677.73014MR980756
- [4] M. Giaquinta, G. Modica and J. Souček, A weak approach to finite elasticity, Calc. Var., Vol. 2, 1994, pp. 65-100. Zbl0806.49007MR1384395
- [5] M. Giaquinta, G. Modica and J. Souček, Graphs of finite mass which cannot be approximated in area by smooth graphs, Manuscripta Math., Vol. 78, 1993, pp. 259-271. Zbl0796.58006MR1206156
- [6] M. Giaquinta, G. Modica and J. Souček, Remarks on the degree theory, 1993. Zbl0822.55003
- [7] E. Giusti, Precisazione delle funzioni H1,p e singolarità delle soluzioni deboli di sistemi ellittici non lineari, Boll. UMI, Vol. 2, 1969, pp. 71-76. Zbl0175.40103MR243190
- [8] C. Goffman, C.J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J., Vol. 28, 1961, pp. 497-505. Zbl0101.15502MR137805
- [9] C. Goffman and D. Waterman, Approximately continuous transformations, Proc. Am. Mat. Soc., Vol. 12, 1961, pp. 116-121. Zbl0096.17103MR120327
- [10] J. Lukeš, J. Malý and L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture notes1189, Springer-Verlag, Berlin, 1986. Zbl0607.31001MR861411
- [11] L. Simon, Lectures on geometric measure theory, The Centre for mathematical Analysis, Canberra, 1983. Zbl0546.49019MR756417
- [12] V. Šverák, Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal., Vol. 100, 1988, pp. 105-127. Zbl0659.73038MR913960
- [13] W.P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.