### Decomposition of homogeneous vector fields of degree one and representation of the flow

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Back to Simple Search
# Advanced Search

This paper is concerned with the stability of the set of trajectories of a patchy vector field, in the presence of impulsive perturbations. Patchy vector fields are discontinuous, piecewise smooth vector fields that were introduced in Ancona and Bressan (1999) to study feedback stabilization problems. For patchy vector fields in the plane, with polygonal patches in generic position, we show that the distance between a perturbed trajectory and an unperturbed one is of the same order of magnitude...

This paper is concerned with the stability of the set of trajectories of a vector field, in the presence of impulsive perturbations. Patchy vector fields are discontinuous, piecewise smooth vector fields that were introduced in Ancona and Bressan (1999) to study feedback stabilization problems. For patchy vector fields in the plane, with polygonal patches in generic position, we show that the distance between a perturbed trajectory and an unperturbed one is of the same order of magnitude as...

This paper is concerned with the structure of asymptotically stabilizing feedbacks for a nonlinear control system on ${\mathbb{R}}^{n}$. We first introduce a family of discontinuous, piecewise smooth vector fields and derive a number of properties enjoyed by solutions of the corresponding O.D.E's. We then define a class of “patchy feedbacks” which are obtained by patching together a locally finite family of smooth controls. Our main result shows that, if a system is asymptotically controllable at the origin,...

**Page 1**