Asymptotics for L 2 minimal blow-up solutions of critical nonlinear Schrödinger equation

Frank Merle

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 5, page 553-565
  • ISSN: 0294-1449

How to cite

top

Merle, Frank. "Asymptotics for $L^2$ minimal blow-up solutions of critical nonlinear Schrödinger equation." Annales de l'I.H.P. Analyse non linéaire 13.5 (1996): 553-565. <http://eudml.org/doc/78392>.

@article{Merle1996,
author = {Merle, Frank},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {blow-up; positive radial symmetric solution},
language = {eng},
number = {5},
pages = {553-565},
publisher = {Gauthier-Villars},
title = {Asymptotics for $L^2$ minimal blow-up solutions of critical nonlinear Schrödinger equation},
url = {http://eudml.org/doc/78392},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Merle, Frank
TI - Asymptotics for $L^2$ minimal blow-up solutions of critical nonlinear Schrödinger equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 5
SP - 553
EP - 565
LA - eng
KW - blow-up; positive radial symmetric solution
UR - http://eudml.org/doc/78392
ER -

References

top
  1. [1] H. Berestycki and P.L. Lions, Nonlinear scalar field equations I. Existence of a ground state; II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., Vol. 82, 1983, pp. 313-375. Zbl0533.35029MR695535
  2. [2] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations I, II. The Cauchy problem, general case, J. Funct. Anal., Vol. 32, 1979, pp. 1-71. Zbl0396.35028MR533219
  3. [3] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 49, 1987, pp. 113-129. Zbl0632.35038MR877998
  4. [4] M.K. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in RN, Arch. Rational Mech. Anal., Vol. 105, 1989, pp. 243-266. Zbl0676.35032MR969899
  5. [5] F. Merle, Determination of blow-up solutions with minimal mass for Schrödinger equation with critical power, Duke J., Vol. 69, 1993, pp. 427-454. Zbl0808.35141MR1203233
  6. [6] F. Merle, Nonexistence of minimal blow-up solutions of equations iut = -Δu - k(x)|u|4/Nu in RN, preprint. 
  7. [7] W.A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., Vol. 55, 1977, pp. 149-162. Zbl0356.35028MR454365
  8. [8] M.I. Weinstein, Modulational stability of ground states of the nonlinear Schrödinger equations, SIAM J. Math. Anal., Vol. 16, 1985, pp. 472-491. Zbl0583.35028MR783974
  9. [9] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Vol. 87, 1983, pp. 567-576. Zbl0527.35023MR691044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.