Asymptotics for minimal blow-up solutions of critical nonlinear Schrödinger equation
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 5, page 553-565
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMerle, Frank. "Asymptotics for $L^2$ minimal blow-up solutions of critical nonlinear Schrödinger equation." Annales de l'I.H.P. Analyse non linéaire 13.5 (1996): 553-565. <http://eudml.org/doc/78392>.
@article{Merle1996,
author = {Merle, Frank},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {blow-up; positive radial symmetric solution},
language = {eng},
number = {5},
pages = {553-565},
publisher = {Gauthier-Villars},
title = {Asymptotics for $L^2$ minimal blow-up solutions of critical nonlinear Schrödinger equation},
url = {http://eudml.org/doc/78392},
volume = {13},
year = {1996},
}
TY - JOUR
AU - Merle, Frank
TI - Asymptotics for $L^2$ minimal blow-up solutions of critical nonlinear Schrödinger equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 5
SP - 553
EP - 565
LA - eng
KW - blow-up; positive radial symmetric solution
UR - http://eudml.org/doc/78392
ER -
References
top- [1] H. Berestycki and P.L. Lions, Nonlinear scalar field equations I. Existence of a ground state; II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., Vol. 82, 1983, pp. 313-375. Zbl0533.35029MR695535
- [2] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations I, II. The Cauchy problem, general case, J. Funct. Anal., Vol. 32, 1979, pp. 1-71. Zbl0396.35028MR533219
- [3] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 49, 1987, pp. 113-129. Zbl0632.35038MR877998
- [4] M.K. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in RN, Arch. Rational Mech. Anal., Vol. 105, 1989, pp. 243-266. Zbl0676.35032MR969899
- [5] F. Merle, Determination of blow-up solutions with minimal mass for Schrödinger equation with critical power, Duke J., Vol. 69, 1993, pp. 427-454. Zbl0808.35141MR1203233
- [6] F. Merle, Nonexistence of minimal blow-up solutions of equations iut = -Δu - k(x)|u|4/Nu in RN, preprint.
- [7] W.A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., Vol. 55, 1977, pp. 149-162. Zbl0356.35028MR454365
- [8] M.I. Weinstein, Modulational stability of ground states of the nonlinear Schrödinger equations, SIAM J. Math. Anal., Vol. 16, 1985, pp. 472-491. Zbl0583.35028MR783974
- [9] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Vol. 87, 1983, pp. 567-576. Zbl0527.35023MR691044
Citations in EuDML Documents
top- Frank Merle, Recent progress on the blow-up problem of Zakharov equations
- Mohammed Lemou, Florian Méhats, Pierre Raphaël, Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov–Poisson system
- Nikolay Tzvetkov, On the long time behavior of KdV type equations
- Valeria Banica, Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.